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ABSTRACT. — We consider a regression model where the unknown regression furfctgoon
known to be decreasing and defined o\&rl]. OurAaim is to study the distance between the
empirical process, and its least concave majorafit. We obtain the asymptotic distributions
of both F, (x) — F,(x), x €10, 1, and thel,-distance betwee#f;, and F,,. These distributions
depend on the distribution of the proce%s— X where X is a standard two-sided Brownian
motion with parabolic drift andX is the least concave majorant & Some properties of this
process are described. Finally we provide the order of magnitude of the supremum distanc
betweenF, andF,,.
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RESUME. — Considérons un modeéle de régression dans lequel la fonction de régressiol
inconnue est définie sUp, 1] et supposée décroissante. Nous étudionsAIa distance entre le
processus empirique, associé a ce modele et le plus petit majorant conéavee F,. Nous
obtenons les lois asymptotiques des écarts, ponctuel et en didianeetreF, et F,,. Ces lois
s’expriment en fonction de la loi du procesgAﬂs X ou X estun mouvement Brownien standard
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sur R avec dérive parabolique et est le plus petit majorant concave de Nous énongons
quelques propriétés de ce processus. Nous donnons enfin I'ordre de grandeur de la distan
uniforme entreF), et F,,.

0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

We observey, ..., y, according to the following model
yi=fx)+e, i=1....n (1.1)

wherex; = i/n, theg;’s are independent and identically distributed random variables
with mean zero and varianee and the regression functiofis assumed to be monotone

— say decreasing — di0, 1]. Our aim is to study the asymptotic behaviourff— F,,
whereF, is the empirical process given by

1 n
Vte[o7 1]7 Fn(t)=_zyi]]-x,'gt (12)
)

and F, is the least concave majorant &f. We first study the pointwise asymptotic
distribution of F,, — F,. It depends on the distribution of (0), defined as the least
concave majorant at time zero of the standard two-sided Brownian motion with parabolic
drift. We stateAin Theorem 4.1 that for everye 10, 1[, F, (x) — F,,(x) converges at the
n?3-rate toC ;X (0), whereC is a normalizing constant that depends on bftndo2.

We are then interested in the global behaviou?“,p# F,.In Theorem 5.1, it is stated that

the order of magnitude of the supremum distance betweemd F, is n=%3(logn)%3.
Finally, we give in Theorem 5.2 the asymptotic distribution of thedistance between

F, andF,. Itis shown that a centered version ff| F,, (1) — F, (1)|7 dt converges at the
n+40/6rate to a Gaussian variable.

The problem of studying the empirical process under order restrictions has beel
considered in the context of density estimation by Kiefer and Wolfowitz [5], Wang [10]
and is, at the time of the writing of this paper, also studied by Kulikov and Lopuhaa
[6]. In this framework, the authors have considered the empirical distribution function
associated to a random sample whose underlying density is assumed to be decreasi
Wang has described the asymptotic distribution of the difference between the empirica
distribution function and its least concave majorant at a given point. Kiefer, Wolfowitz,
Kulikov and Lopuhad have studied the distance between the empirical distribution
function and its concave majorant in the global sense. Kiefer and Wolfowitz have provec
that the least concave majorant of the empirical distribution function is asymptotically
minimax estimator of the underlying concave distribution function. They have also
proved that the supremum-distance between the empirical distribution function and it
concave majorant i€p(n"%3(logn)?3) (one can easily check that the proof of their
Theorem 1 provides this rate). Kulikov and Lopuhaé have proved a central limit theorerr
for thelL;-distance between the empirical distribution function and its concave majorant,
which is close in spirit to our Theorem 5.2. Our Theorems 4.1 and 5.1 can be compare:
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to the results of Kiefer, Wolfowitz and Wang. The pointwise asymptotic distribution we
obtain in regression framework is similar to the one obtained by Wang, appart from
a normalizing constant. Moreover, the upper bound¥3(logn)%2 for the supremum
distances are the same in both frameworks. In Theorem 5.1, we also provide a lowe
bound that proves that the supremum distance is exactly of ardét(logn)?3.

It is worth noticing that all the asymptotic distributions mentioned above depend
ona procesg? — X defined as follows: for every € R, X (1) = —n? + W(n) where
W is a standard two-sided Brownian motion, akdis the least concave majorant of
X. Functionals of Brownian motion with parabolic drift usually appear in asymptotic
distribution of estimators obtained under order restrictions. For instance, Prakas:
Rao [7], Brunk [1], Huang and Wellner [4] have studied the pointwise asymptotic
distribution of the isotonic estimator of a monotone density and of a monotone regressiol
function. They have proved that, when properly normalized, these estimators converge i
distribution to the location of the maximum &f (that is distributed as half the slopeiif
at time zero). Groeneboom et al. [3] and Durot [2] have proved, in density and regressiol
framework respectively, a central limit theorem for thedistance between the isotonic
estimator and the function to be estimated. In both cases, asymptotic expectation ar
variance depend on a location process related to Brownian motion with parabolic drift.

The paper is organized as follows. Some properties of least concave majorants ai
given in Section 2. In Section 3 we describe some properties of the canonical proces
X — X the asymptotic distribution off, — F, depends on. Pointwise asymptotic
distribution of £, — F, is given in Section 4. Finally, global behaviour Bf — F, is
studied in Section 5.

2. Some properties of least concave majorants

R In this section,I denotes an interval ifR, Z denotes a process indexed byand

Z denotes the least concave majoranttn), n € I}. The first lemma of this section
summarizes properties of least concave majorants that have been used by Prakasa Rac
and others.

LEMMA 2.1.—For everytr € I, a > 0O, b € R, the least concave majorant at time
t of {aZ(m) — b, nel}is aZ(t) — b and the least concave majorant at timeof
{Z(n) —bn, nel}is Z(t) — bt. Moreover, we have the following property of change of
variable if J denoteg(n, an + b € I} then for every € J, a 20 andb € R, the least
concave majorant at timeof {Z(an + b), ne J}is Z(at +b).

Proof. —We only prove here the first property. The last two properties can be proved
in the same way. LeG be the least concave majorant{@f(n), n € I}, whereG (i) =
aZ(n) — b. Thenn — (G(n) +b)/a is concave and abovE so (G(t) +b)/a > Z(1)
forallr € I. Likewise,n — aZ(n) — b is concave and abov&@ soaZ(t)—b > G() for
all t € I, which proves tha&Z(z) —b= G(z) foreveryr. O

The following result will be repeatedly used in the paper. An interesting consequence
of this result is that the supremum distance between least concave majorants of tw
processes converges to zero whenever the supremum distance between the proces
themselves converges to zero.
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LEMMA 2.2.—Let Z and Z’ be processes indexed byand letZ and Z’ denote the
least concave majorants @f and Z’ respectively. Then,

Su[plf(n) ~Z'()| < Su[p|Z(n) —Z'(n)|.
ne ne

Proof. —Fix x € I and assume without loss of generality thate) > Z'(x). Assume
first Z(x) = Z(x). Then|Z(x) — Z'(x)| < Z(x) — Z'(x), which is less than or equal to
the supremum distance betweZrand Z’. Assume nOV\Z(x) > Z(x). Then there exist
u < x andv > x such thatZ(u) Zw), Z(v) = Z(v) and Z is affine on[u, v] (that is
ZO=Zw) + (t — u)w for everys € [u, v]). Also, t — Z(t) — Z/(1) is convex
on[u, v] and therefore,

Zx) = Z'0 <ma{Z(w) = Z'w), Z@) = Z'(w)} <sup|Z(m) — Z'(n)|
ne

We thus have
1Z(x) - Z'(0)| < Sup|Z () — Z'(n)|
ne

for everyx € I, which proves the lemma.n

3. Thecanonical process

Both pointwise and global asymptotic distributions of the distance between the
empirical process, defined by (1.2) and its least concave majorjptdepend on a
canonical procesé? — X defined as follows: for every € R, X() = —n?> 4+ W)
whereW is a standard two-sided Brownian motion, axids the least concave majorant
of X. The aim of this section is to describe properties of this canonical process. We firs
state a stationarity property.

LEMMA 3.1.—For everyr € R, X (t) — X (¢) is identical in distribution taX (0).

Proof. —-By Lemma 2.1X(t) — X (1) is the least concave majorant at time zero of the
procesy—(n+1)?>+ W(n+1)+12— W(r), n € R}. Itis thus identical in distribution to
the least concave majorant at time zero of the progess + 1)2 + W(n) + 12, n e R},
that is equal taX (0) (see the second property in Lemma 2.1

We now prove in Lemma 3.2 that the least concave majokaat a given point
is essentially unchanged if the proce®sis restricted to some long enough bounded
interval centered at. The increments of Brownian motion are independent and the
difference betweenX () and the least concave majorant at timeof {X(n),n €
[t — 2c,t + 2c]} only depends on the increments of the Brownian moti@non
[t — 2c, t + 2c]. It thus can be shown from Lemma 3.2 tHat- X is a mixing process.

LEMMA 3.2. —Letc be some positive real number and for evegyR, let X" denote
the least concave majorant 0K (), n €[t —2c,t + 2c]}. Forall t e R,

P(X(1) # X" (1)) < dexp(—c3/2).
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Proof. —Let R(c) be defined by

X(u) — X(v)

R(c)=IP’<EIu<a—c, v>a+c, X+ (a—u)>X(a)>.
Then R(c) does not depend oa since {W(t + a) — W(a), t € R} is identical in
distribution to{W(z), r € R} for every fixeda € R. We have

P(X(t) # X" (1)) <P(AUB),

whereA is the event that there exist some< ¢, v > ¢ + 2¢ such that the line segment
joining (u, X (1)) and (v, X (v)) is above(r + ¢, X (¢ + ¢)) and B is the event that there
exist somea: <t — 2¢, v > t such that the line segment joinirig, X («)) and(v, X (v))

is above(r — ¢, X(t — ¢)). Settinga =t + ¢ yields P(A) = R(c). Likewise, setting

a =1 — c yields P(B) = R(c). Therefore,P(X () # X'(t)) < 2R(c). (Note that the
above arguments leading to the latter inequality are due to Prakasa Rao [7], see h
Lemma 6.2.) Setting = 0 yields

P(X(t) # X" (1)) <2P({3u < —c, X(u) >0} or{Jv>c, X(v)>0}).

Let » andc be positive numbers. Change of variable- ¢/u yields

P(sup{W (u) — bu?} > 0) < IP’( sup {%W(%} > bc3/2>.

u>c ve(0,1] v

But {vc™Y2W(c/v), v € R} is a standard two-sided Brownian motion (see e.g. Revuz
and Yor [8], pp. 19-20) so

P(sup{ W (u) — bu®} > 0) <P( sup W(v) > bc*?).

u>c vel0,1]

By exponential inequality (see e.g. Revuz and Yor [8], p. 52) we obtain

P(sup{ W (u) — bu?} > 0) < exp(—b?c?/2), (3.3)

u>c

and Lemma 3.2 follows. O

We now state probability and covariance inequalities that imply existence and
finiteness ofn, andk,, defined forg > 0 by

q

k)

X@t)—X(1)|") dr. (3.4)

m, =E|X(©0)" and kq:/cov(]f((O)
0

LEMMA 3.3. — For everyr > 0,

P(X(0) > 1) < 4exp—r¥?/2). (3.5)
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Moreover, for every; > 0 there exists some positive constaht such that for every
t eR,

q

’

| cov(| X (0)

S |t
£ = X" < 4 ex0( 5 ). (3.6)
Therefore, for every > 0O, the constants:, andk, as defined in(3.4) are finite.

Proof. —It follows from (3.3) that for alk > O,

P( sup {X(n)} > 0) <2exp—1¥?/2).

Inl>%/2
For alln, X(n) < W(n) so it follows from scaling and symmetry of Brownian motion
that
P( sup {X(n)} >1) <2P( sup {W(n)} > 134,
In|<t2/2 n€l0,1]

where by exponential inequality, the latter probability is less than or equal to
exp(—1%2/2). Inequality (3.5) now follows from the fact that the least concave majo-
rant at time zero of the proce3sis less than or equal to the supremunXofintegrating
(3.5) yieldsm, < oo for all g > 0.

Inequality (3.6) is an immediate consequence of finitenesspfwheneverr = 0.
We thus assume# 0. For everyr € R\{0} andc > 0, let )?g” be defined as in Lemma
3.2. For the sake of simplicity we noté)(s) = X.(r). Since for allz, X.(r) — X (1)
is the least concave majorant at time zero of the prote$s + )2+ W(n +t) + 1% —
W), n €[—2c, 2c]} (see Lemma 2.1), it only depends on the increment® dietween
timest — 2c andt + 2¢. Increments of Brownian motion are independent so the random
variablesf(c(t) —X@) and)?C(O) are independent whenevek |¢|/4. In the sequel we
setc = |t|/4. Then,

q

’

cov(|X.(0)|, |X.(1) = X(1)|") =0.

By Lemma 3.1E|X (1) — X (1)|? = m, for all € R. Since X (1) < X.(1) < X(¢), by
Cauchy—Schwarz inequality and Lemma 3.2 we have fdralD

E|X.(t) — X()|' <my?PY2(X (1) # X (1)) < 2m3? exp(—c®/4).

We obtain (3.6) by using the following consequence of Cauchy—Schwarz inequality: if
X, Y, X’ andY’ are random variables ih, then

|cov(X, Y) — cov( X', V)| <EY? X PEY?|Y — Y'|?+ EY?)Y/)PEY? X — X'|2. (3.7)

Existence and finiteness &f follows from (3.6). O

4. Pointwise asymptotic distribution of F,—F,

In this section, we describe the asymptotic distributioArﬁpf— F, at a given point
x €]0, 1[. We prove that, when properly normalized?3(F,(x) — F,(x)) converges
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in distribution to X(0) defined in Section 3. Apart from a normalizing constant that
depends ory ando? = E(e2), the asymptotic distribution we obtain is the same as the
one obtained by Wang in the context of density estimation, see [10].

THEOREM 4.1. — Assume we are given the regression mddel), wherex; =i/n,
the ¢;'s are centered independent and identically distributed random variablesfand
is a decreasing twice differentiable function with bounded second derivative, Lt
the empirical process defined .2) and let 7, be the least concave majorant 5f.

If there exists some > 3 such thatE|e4|? is finite and ifinf,cj0.1;] /()| > O, then for
everyx €10, 1],

-1/3

n2/3(}?n(x) — F,(x)) D, 543 X(0), asn— oo,

f')
2

whereo? = E(£2), X is the least concave majorant of the procgds(n) — n2 1, € R}
and W is a standard two-sided Brownian motion.

The rest of this section is devoted to the proof of Theorem 4.1. Some of the idea:s
involved in this proof are close in spirit to Prakasa Rao’s. Arguments used to obtain the
asymptotic distribution ofi?/3(F, (x) — F,(x)) are the following. We assume = 1.

First, we prove thaf,, can be approximated in distribution by some continuous process
G, defined by

Vnel0,1l, G.(n)=Fm)+Wm/vn, (4.8)

where F(n) = [j f(s)ds and W is a standard two-sided Brownian motion, see
Lemma 4.1 below. The least concave majorant,ptan then be approximated in law by
the least concave majorat, of G,. Next, we prove that the least concave majo@nt
of G, at a given point is essentially unchanged if the processis restricted to some
interval with length 4n /3 (wherec > 0) and centered at, see Lemma 4.2 below. The
result then follows from properties of least concave majorants described in Section 2.

For the sake of simplicity, we have assumed in Theorem 4.1 firsstisfies global
regularity conditions. However, it is worth noticing that the convergence result in
Theorem 4.1 remains true under local regularity conditions. More specifically, the
convergence result in Theorem 4.1 still holds under the following less restrictive
conditions:x; = i/n, f is hon-increasing oif0, 1] and continuously differentiable in
a neighbourhood af, f'(x) < 0, theg;’s are i.i.d. with[Ee; = 0 andE|e,|? < oo for
somep > 2. To prove this, one can first prove in the same way as Lemma 4.2 that for
large enouglr, F,(x) is essentially identical t@), .(x), the least concave majorant at
time x of the restricted processF, (), |n — x| < 2cn~Y3}. More precisely, one can
prove that

lim limsupP(F, (x) # F, .(x)) =0.
cC—>0 n—00

It can be shown then that the procegB,(n) — F,(x), |n — x| < 2cn~Y3} is
asymptotically uniformly close tdG,(7) — G,(x), |n — x| < 2cn~3}, provided
e1,..., &, are defined on some rich enough probability space. The result then follows
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from Taylor's expansion of' and Lemmas 2.1 and 2.2, sing¢éis uniformly continuous
in a neighbourhood of.

The reason why we choose to prove Theorem 4.1 under global regularity condition:s
is that Lemmas 4.1 and 4.2 are useful to prove our main result, Theorem 5.2 below
which describes asymptotic global behaviourf— F,. Stating Theorem 4.1 under
local assumptions would make the paper cumbersome.

LEMMA 4.1. —-Assume we are given the regression mddiel), wherex; =i/n, the
g;’s are centered independent and identically distributed random variablesfaisda
differentiable function with bounded derivative. LEgtbe the empirical process defined
by (1.2) and letF be defined byF (1) = [y f(s)ds, t € [0, 1]. If the &;'s are defined on
some rich enough probability space andEik,|? is finite for somep > 0then there exist
someC), > 0 and some standard Brownian moti®h such that for allu > O,

IP’( sup

t€[0,1]

F,(t) — F(t) — %W(r)’ > u> <Cpn*Pur. (4.9)

If sup | f(r)| <soandsup | f'(t)| < s1, then one can choose, that only depends op,
so andsy.

Proof. —~We assume without loss of generality thet2 > (sg 4+ s1)/n (in the case
whereu /2 < (so + s1)/n, it suffices to choos€, large enough so that the upper bound
in (4.9) is greater than one and the inequality is trivial). Suppose that'thare defined
on some rich enough probability space so that the Sakhanenko’s construction holds. |
that case, see [9], there exists some standard Brownian midf@uch that

k

E Su
( 1gk£n ;

P
& — Wo(k) ) < nEley)”. (4.10)

In the sequelv denotes the standard Brownian motion definediby) = Wo(nt)//n
and[nt] denotes the integer part of. Letd andu be positive numbers with < 1. For
everyr € [0, 1] let  (¢) denote that element §0, d /4, 2d /4, . .., ([4/d]+ 1)d /4} which
is closer tar. Then,|7(t) —t] < d/8 and|n (r) — s| < 9d/8 for everys with |r — 5| < d.
Therefore,

(i kd u
P( sup |[W@)—W(s)|>u)<2) IP’( sup W(—) —W(s)| > —).
re[0.1], |r—s|<d k=0 s 4 2

From time homogeneity and scaling properties of Brownian motion,

4 u
P su W) —-w <2<—+2)P(su w )
(fe[oglls IBSI@’ © ©)]> 1) d |s|<?’ ©)]> 2,/9d/8

It thus follows from symmetry of Brownian motion and exponential inequality that

48 u?
P( sup (W) — W(s)| >u) < — exp(——) (4.11)
1€[0,1], |t—s|<d d 9d
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for all u > 0 andd € (0, 1]. In particular, there exist some positiveand A’ such that
for all positiveu
2u2

9 x 42

1 W([m]> 1 W(t)‘ /4) < Anex (
— — |- — >u < An -
i\ ) T P
Moreover, sup| > ;«,, f(xi) —nF(t)| < so+s1 and therefore, the probability in (4.9) is
less than or equal to

P( sup

t€[0,1]

) < AntPyr,

IP’( sup

1<k<n

1 1 k
—Zsi - —W(—)‘ > u/4> + Ant Py,
n i Jnoo\n

The result now follows from Markov’s inequality and (4.10)C

In the following lemma, it is stated that the least concave majotgnof G, at a
given pointx is essentially unchanged if the proceSs is restricted to some interval
with length 41~/3 (wherec > 0) and centered at. This result has to be compared to
Lemma 3.2, where an analogous property of the canonical proces¥ is stated.

LEMMA 4.2. -Let f be a decreasing function defined @) 1] and G, be defined
by (4.8). LetG, and G,(jfg be the least concave majorants of the proce$sgsn), n €
[0, 1]} and {G, (1), n € [x — 2cn™ Y3, x + 2cn=Y3] N [0, 1]} respectively, where > 0
and x € [0, 1]. If f is twice differentiable withnf,|f'(¢)| > ¢, sup | f/'(#)| < s1 and
sup | f”(¢)| < sz for some positive, s; andsy, then there exist some positikeand K’
that only depend on, s; ands, such that

P(G,(x) # G¥(x)) < 12exp—K )

whenevern > K'c5.

Proof. —Fix x € [0,1]. Let X; be the smallest real number> (x — 2cn~1/3) v 0
that satisfiesG, (1) = ijfg(u) (with the convention that the infimum of an empty set

is (x 4+ 2cn~Y3) A 1). If % > x then by definition,G, () # G (u) for all u < x. In
that case, there exist sonye< x — 2cn~/3, z > x such that the line segment joining
(y,G,(y)) and (z, G,(z)) is above(t, G,(¢)) for all € (y, z). More specifically, this
line segment is abovéx — cn=Y3, G, (x — cn~Y/3)), which implies that the slope of
the line segment joiningy, G, (y)) and (x — cn=Y3, G, (x — cn™/3)) is smaller than
the slope of the line segment joinirig, G, (z)) and (x — cn=Y3, G, (x — cn™Y3)). We
thus havey; < x whenever the following inequality holds for all < x — 2cn=/3 and
all z > x:

G,(y)—G,(x — cn~13) S Gn(2) — Gu(x —cen~Y3)
y—x+cn 13 ~ z—x+cn13
But the latter inequality holds whenever the left hand term is greater than some giver

real numbere and the right hand term is smaller than Therefore for every > 0,
P(x; > x) <Py + Py, where

Pi=P3y<x -2 G,(») —=G,(x —en ) > (y —x + cn” "))
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and

First we estimate the probabilif§;. For every real number, we haveP; < P11 + Py o,
where

P11=P(G,(x) — Gu(x — cn_1/3) —can 3> 1)
and
Pio=P3y <x—2en 3 G,(x) — G,(») + (y —x)a <1).
In the sequel, we fixt = n=?3c?f'(x)/4 and a = f(x) + cn 3| f'(x)|. Since
n~Y8cY2W (1) is identical in law toW (x) — W (x — cn~Y3), we have
P11 <P(VeW(Q) > can®®+n?3t + nz/g(F(x — cn_1/3) — F(x))).

From Taylor’'s expansion,

2 3
F(x — cn_l/?’) —Fx)>—cen 3 f(0) + %n_2/3f/(x) — %n_1s2

since by definition, sup f”(¢)| < s2. Therefore,

2, Ry
P11 < P(ﬁ UOES RO Ezc?’n_l/3).

If 3n/3¢ > 4s5c, thenPy 1 is no more thaP(8W (1) > ¢¥2¢), which is, by exponential

inequality, no more than exp K ¢®) for some positive real numbés that only depends

one. Letus estimat@®; ,. By scaling and time homogeneity of Brownian motion, change

of variablez = n'/3(x — y)/2c yields:

P, > <P(s 2/3 o —1/3\ 1/3 Al f ()
12< < up{n“>(F (x —2cn=">z) F(x))+\/ZW(z)+2axn z} > 1 )

z>1

Let a be some real number witke > 25, (which impliesa > 1). On the one hand, the
first derivative off is non-positive. So by Taylor’s expansion, for alf a,

n?3(F (x — 2en™3z) — F(x)) + 2can*3; < —c?72%. (4.12)

It then follows that

2| £/
P(Sup{n” 3(F(x — 2en73) — F(x)) +v2¢ W(z) + 2can®z} > L2 'f4(x)')

z2a

P 2l g
< SU W - k]
(z)a (Z) «/é ¢ } ~ )

where by (3.3) the latter probability is no more than exg ¢®) for somek > 0 that
only depends on anda. On the other hand, for atle [1, a] there exists somg € [0, 1]
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such that
n?3(F(x — 2en™Y3z) — F(x)) 4 2can®z = 2¢2| f'(x)|z(1 - z) — c 3133 (£,

where 22| f'(x)|z(1 — z) < 0. Therefore there exists sonk& > 0 that only depends on
¢, a ands, such that for alk € [1, a]

n?3(F(x — 2en™Y3z) — F(x)) 4 2can3z + tn®* < —c?| f'(x)|/8 (4.13)

wheneven > ¢3K’. So there exists som& > 0 that only depends ananda such that

2/3 13 Io» 3y _ Sl @)
( sup {n?3(F (x —2cn™3z) — F(x)) + v2c W(z) + 2can®?z} > T)
z€[l,a]

<exp(—Kc®)

whenevem > c3K’. We thus havéP; , < 2exp—K c®) whenevem > ¢K’. Therefore

P; < 3exp— Kc3) wheneven > ¢3K’. By using the same arguments, one can prove that
there exist some positive real numbéfsand K’ such that?, < 3exp—K ¢®) whenever

n > c3K’. SinceP(%; > x) < Py + Py, it follows thatP(%; > x) < 6exp—Kc®). Let %,

be the greatest < (x + 2cn~Y/3) A 1 such thatG, (u) = G{)(u), with the convention
that the supremum of an empty set(is— 2cn~/3) v 0. One can prove by using the
same arguments as above that there exist some positive real nukhbadsk’ that only
dAepend Ore, s1 and s, such thatP(x, < x) < 6exp—Kc®) whenevem > ¢3K’. But

G, (x) = G{)(x) wheneverk; < x < X, so the proof of Lemma 4.2 is completer

We turn now to the proof of the main result of this section.

Proof of Theorend.1. —In the sequelF(¢) denotesfé f(s)ds, t €[0,1]. We assume
without loss of generality that = 1 and that the;’s are defined on some rich enough
probability space so that the Sakhanenko’s construction holds.

Let G, be the process defined by (4.8) whdié is some Brownian motion that
satisfies (4.9) for some > 3. Thenn2/3sup€[o,l] |F,(t) — G,(t)| converges to zero in
probability as: goes to infinity. IfG,, denotes the least concave majorant of the process
G,, then by Lemma 2.2:%3(F, (x) — G,.(x)) also converges to zero in probability @s
goes to infinity. By Lemmas 3.2 and 4.2 it thus suffices to prove that there exists some
k > 0 such that for alt > 0,

~1/3

SO200),  asn— oo (4.14)

2

3G (x) — Gol)) 2 |

n,c

whereG(X) andX(O) are defined as in Lemmas 4.2 and 3.2. Fix 0 and assume large
enough so thaltr — 2cn =3, x + 2cn 3] C [0, 1]. By Lemma 2.1(G{).(x) — G, (x))
is the least concave majorantra 0 of the process

{Gu(x +1) = G, (x), n€[—2cn3 2en™ 3]}
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By Taylor's expansion and time homogeneity of Brownian motion, it is identical in
distribution to the concave majorantsat= 0 of

2 3 1
{nf(x) + %f’(x) + %fﬁ(én) + EW(TI), ne[—2n 3, 2cn_l/3]}

where &, € [0, 1]. Change of variablé = n'/3| f'(x)/2|?/3y, the three properties in
Lemma 2.1 and scaling property of Brownian motion yield th&f|f'(x)/2|"/® x
(ijfg(x) — G,(x)) is identical in distribution to the least concave majorans at 0
of

{—52 + n‘1/38_3’ RO
6| 2

116+ W, 5 €[22 e, 20 o]}

whereg; € [0, 1]. Since f” is bounded anglf’| is bounded away from zero, it converges
in distribution to the least concave majorant of

2/3

(W) —n?, n e [=2 £')| e, 243 ()| c] }

asn goes to infinity. This proves (4.14) and completes the proof of the theorem.

5. Global behaviour of F, — F,

In this section we describe the asymptotic distribution oflthedistance betweef,
and F,, and provide the order of magnitude of the supremum distance between thes
processes.

5.1. Statement of the main results

We first state that the supremum distance betV\IEeandF,, is of order((logn)/n)%3.
Let ¢, 5o, s1 ands, be positive numbers and I be the class of decreasing functions
f defined on[0, 1] that satisfy the following propertiesf is twice differentiable,
inf, | f'(t)] > e and sup|fP ()| < s;, where £ denotes theith derivative of f,
i=0,12.

THEOREM 5.1. —Assume we are given the regression mddel), wherex; =i/n,
the ¢;'s are centered independent and identically distributed random variables with
E|eq)® < oo. Let F, be the empirical process defined fiy2) and let F,, be the least
concave majorant of;,. If 7 is not empty, then there exist some positivand C’ such
that for all n

2/3
C< ( - ) SUpE ,( sup |F,(t) — F,(1)]) <C',
logn feF 1€[0,1]

whereE ; denotes expectation in mod@l1).
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This result has to be compared with Theorem 1 of Kiefer and Wolfowitz [5].
Let X4,..., X, be independent and identically distributed random variables whose
underlying density is assumed to be decreasing. In their Theorem 1, Kiefer anc
Wolfowitz state that the supremum distance between the empirical distribution function
and its least concave majorant@, ; (n=%2logn). In fact, slight modification of their
proof leads to the fact that this supremum distanc@ig((logn)/n)?3). It is thus
not surprising that, in our framework of regression estimation, the supremum distance
between the empirical process and its least concave majoréht({glogn)/n)%3). In
our Theorem 5.1, we also provide a lower bound that proves that the order of magnitud
of this distance is exactlglogn)/n)?3.

We turn now to the statement of our main result: the asymptotic distribution of the
LL,-distance betwee#, and F, is given in the following theorem. Let us recall that the
constantsn, andk, defined by (3.4) exist and are finite (see Lemma 3.3).

THEOREM 5.2. —Assume we are given the regression mddel), wherex; =i/n,
the ¢;’s are centered independent and identically distributed random variablesfand
is a decreasing twice differentiable function with bounded second derivativet, Lt
the empirical process defined (.2) and let F,, be the least concave majorant Bf.

If inf,ci0.1;1f' ()| > 0 and if there exists some > 6 for which E|e4|” is finite, then for
everyg > 1/2+3/(2(p — 3)),

1 1
= (1)
n'/® <n2‘1/3 |E,(t) — Fy(t)|" dt —m, f
o/ o/

204

—q/3 D
dt) — N (0, 1“3) asn — oo,

where
1
o?=E(e}),  IZ=2k,0% / £()/2) 2 gy
0

and wheren, andk, are defined by3.4).
5.2. Proofs

This section is devoted to the proof of Theorems 5.1 and 5.2. We assume her
that o = 1 and that thes;’s are defined on some rich enough probability space so
that Lemma 4.1 holds. By Lemma 4.1, the empirical functigncan be uniformly
approximated in distribution by the proceSs defined by (4.8). Thereford;, can be
uniformly approximated by the least concave major@ptof G,, which can be itself
approximated by the least concave major@rjtg of G, restricted to a well chosen
bounded interval (see Lemma 4.2). In order to obtain global results, we first state tha
this approximation can be performed uniformly an it is stated in Lemma 5.1 that
sup, |G, (x) — GY (x)| is small whenever is large enough.

LEMMA 5.1.-Let f be a decreasing function defined f® 1] and G,, be defined
by (4.8). LetG, and G,(jfg be the least concave majorants of the proces$¢gsn), n €
[0,1]} and {G,(n), n € [x — 2cn™ Y3, x + 2cn~Y3] N [0, 1]} respectively, where > 0
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and x € [0, 1]. If f is twice differentiable withinf, | f'(r)| > ¢, sup | f'(t)| < s; and
sup | f”(1)| < s2 then there exist some positive and K’ that only depend os, s; and
s, such that for allg > 0

E( sup ’én(x) - @fz’fz(x)|q) < Ayn3"2c¢” exp(—Kc3),
x€[0,1]

for someA, > O that only depends o#, s; ands, and wheneven > K'c3.

Proof. —The development of the proof is similar to the one of Lemma 4.2. We
use here the notatiof; defined in the proof of Lemma 4.2. For everye [0, 1], let
oy = f(x)+en Y3 f/(x)] andt, =n~?3c? f'(x) /4. We haveP(3x € [0, 1], (X; —x) >
0) <Py + P, where

Py =P(3x €[0, 1], Iy <x —2cn 3,
Gn(y) -G, (x — Cl’l_l/3> > (y —x +Cn—1/3)ax)

and
P,=P(3x €[0,1], I3z=>x, G,(2) — G, (x —cn ) > (z —x + ecn 3)a,).
Also, P; < Py 3 4+ Py 2, where
P11=P(3x €[0,1], G,(x) — G, (x — cn_1/3) —can V3> )
and
Pio=P3Ex €[0,1], Iy <x —2en3 G,(x) — G, (y) + (y — )y <1y).

We obtain by using Taylor's expansion

2
P11 < IP’( sup nl/G(W(x) —W(x— cn_1/3)) > C—s),
xe[0,1] 8

whenever 3Y/3¢ > 4s,c. Inequality (4.11) holds for every > 0, d < (0, 1]. There thus
exist some positive numbers K andK’ such thatP; 1 < An'/2exp(—K ¢®) whenever
n > K'c. Leta be some real number witte > 2s;. For allx € [0, 1], z > 1, letY, (x, z)
be defined by

Y, (x,2) =n?3(G, (x — 2en"Y32) — G, (x)) + 2ca,n*3z + n?3t,.
We have (4.12) for alk € [0, 1] and allz > a so

P(sup{Y,(x,z)} > 0)

2
< P(Sup{nl/6(W(x —2cn7Y37) — W(x)) — ec?2?} > %), (5.15)
X,z
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where the supremum is taken over the set
{(x,2), x€[0,1], z € [a;xn™3/(20)]}.

For all n € N, let k, be the integer part ofk'/3c and for all j € {1,...,k,}, let
tj = j/k,. From (3.3) there exists sonte > 0 that only depends onanda such that
forall j e{1,...,k,},

P(Sup{nl/G(W(tj — 2cn_1/3z) —W(;)) —ec z2} > 0) <exp(—K 3).

z2a

By symmetry and time homogeneity,

2
IP’( sup  {nYE(W(x —y) =Wt —y)} > 2)

xeltj_q1,t1,y€[0,1] 8
Sl’l -1/6
<P sup W) —W(y)| > ——
Vel0, 1, Ju—y|<1/ky 8

forall j e{1,...,k,}, wheretg = 0. Assume:/3c=* > 2. Thenk, > n'/3¢1/2 > 1 and
from (4.11) there exist soma > 0 and K > 0 such that the latter probability is less
than or equal toik, exp(— K c). Therefore, there exist somg K and K’ such that the
probability in (5.15) is less than or equal g2 exp(— K ¢*) whenevem > K'c3. From
(4.11) and (4.13) there exist some positiveK and K’ such that

P( sup  {Y,(x,2)} > 0) < An*3ctexp(—Kc®)
x€[0,1], z€[1,a]

whenevem > K'c3. There thus exist some positive K, K’ such that
P1, < An?Pc 2 exp(—K c®)

whenevem > K'c3. It follows thatc?P; < An?2exp(—K c®) for some positived and
K,wheneven > K ’c3 Repeating the same kind of arguments, we obtain that there exist
someA, K andK’ that only depend on, s; ands; such that

P(3x €[0,1], G,(x) # Gl (x)) < An®Pc2exp(—K P) (5.16)

whenevemn > K'c. Itis assumed thaF is concave so by Lemma 2.2,

sup |G, (x) — G¥(x)| <2 sup |G, (x) — F(x)| < 2 sup |W(x)].
x€[0,1] ' x€[0,1] 1 xe[0,1]

By Hoélder’s inequality we have

E( sup [G,(x) = G )[")

.XE

El/z( sup |W(o)|*)PY2(3x €0, 1], G, (x) # GE().
x€[0,1]
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This last inequality combined with (5.16) completes the proof of the lemraa.

Proof of Theoren®.1 —In the sequelP ; denotes probability in the model (1.1). Let
G, be the process defined by (4.8), whéveis some standard Brownian motion that
satisfies (4.9) wherg = 3 andC3 only depends om, andsg. Let G, be the least concave
majorant of{G,,(¢), t € [0, 1]}. By (4.9) and Fubini's Theorem we have

E/(sup |Fy(0) = G, 0]) < [ 1A (Con2u™)du.
t€[0,1] "

There thus exists som& > 0 such that for allf € F and alln,

Es(sup |F,(t) — G,(1)|) <C
t€[0,1]

From Lemma 2.2 we also have
n?PE,( sup |F,(t) — G, (1)) < C
t€[0,1]
Let ¢, = (cologn)!/3 for some large enoughy, > 0 and letd, = (dylogn)*/3 for some

dy €10, 1/(10?)[. We will prove that on the one hand, there exists safe- 0 such
that

2/3
(IO';n> £ sup GO (1) —G,(0|) < C’ (5.17)
te[0

for all large enouglr and all f € F and on the other hand, there exists satne 0 such
that

2/3
" O oy S
(IOgn) Efo(,f[“p G0 = Ga]) > C (5.18)

for some fo € 7 and all large enough. From Lemma 5.1 and since for every
G, < G”d (t) < G, (1), Theorem 5.1 follows from these last four inequalities. For

all r € [0, 1], let ch (1) be the least concave majorant at time zero of the process

{—772 1 /e

where

f/(t) 13 —1/3| ¢/ —-2/3
LR Wi +n3 502 n)—W(t)),neIn(t)}, (5.19)

2/3
((nl/st) A (2¢,));

2/3

L0
2

L,(t) = [— (n*31—-1) A (2cn))].

The least concave majorant of a process at a given time is less than or equal to tr
supremum of this process so for alk- 0 and all f € F,

Py ( sup |Z, (0] > x) <Py(n™8(s1/2)"* sup (W) — W(@)| > x).
t€[0,1] t€[0,1], |t—u|<2c,n~1/3
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From (4.11), there thus exist some positideand K such that for allx > 0 and all
ferF,

Ps( Sup |ch (D] >x) < (Anl/3 exp( Kx /cn))

te[0,1]
whenever is large enough. Therefore, there exists s@me 0 such that for allf € F
and all large enough,

E( sup 1Z.,,(1)|) < C'(logn)?2. (5.20)
te[0,1]

For everyr € [0, 1] and everyn € I,(1), let Z., (¢,n) denote the value of the process

(5.19) at timen. It follows from Taylor's expansion and the three properties in

Lemma 2.1 that®?3| f(1)/2|73(G{). (1) — G.(1)) is the least concave majorant at time
zero of the process

3 (¢ -5/3

{Zm(h ) +n 3L #

FIED. ne In(t>},

where for alln, &, is some number ifi0, 1]. By Lemma 2.2, there exists sonie > 0
that only depends osy ands; such that

1/3

sup |Z,, (1) — n?/®

t€[0,1]

20
2

(G (1) — G,,(z))’gl(n—l/%ﬁ. (5.21)

n,cy

We obtain (5.17) by combining (5.20) and (5.21).

Let fp be the decreasing function defined foe [0, 1] by fo(#) = —et + so. Then,
sup | fo(r)| = max(so, € —so). Butforall f € F, f(0)— f(1) > ¢ and therefore, § > ¢.
It follows that sup| fo(¢)| = so and f, € F. Letk, denote the integer part of/3(4d,)~*
and for allj € {1,...,k,}, lett; = j/k,. Moreover, letc = dg/°|e/2|*3. By Markov's
inequality

1 \23 R R
( ) Ep(  sup |Z4,()]) = xPg( sup |Zy, ()| > x(logn)*?).
logn 1<) <hn—1 1<j<hn—1

By (5.21) wherer,, stands foi,, it suffices to prove that

liminfPr(  sup |Zg, ()| > x(logn)?®) > 0 (5.22)

1<j<kn—1

in order to prove (5.18). The increments of Brownian motion are independent and
therefore the random variables,, (¢;), j € {1,...,k,}, are independent. Moreover,
n13k-1 > 44, so it follows from scaling and time homogeneity of Brownian motion that
the random variablédn (t;) is identical in distribution to the least concave majorant at
time zero of{—n?+ W), Inl < 2d,|f'(t;)/2/?3},forall j € {1,...,k, —1}. Therefore
when f = fy, the random variableédn (tj), j €{1,...,k, — 1}, are independent and
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identically distributed. It follows that

Pr( sup |Zg,(t)] > x(logn)¥3) =1—Py=Y(|Zy, (1| < x(logn)??),  (5.23)

lgjgkn_l

Wherefdn (1) > 0. The least concave majorant of a procE¥sat time zero is greater than
or equal to either the supremum X (), n < 0} or the supremum ofX (), n > 0}.
Moreover, {W(n), n > 0} is independent of W(n), n < 0} and for anyb > O,
SUR,c(0.5{—n? + W ()} is identical in distribution to sup,_, o, {—n* + W (1)}. We fix
b, = 2d,|e/2|?/3. Then the right hand term in (5.23) is greater than or equal to

1— (1—P%( sup {—n?+ W)} > x(logn)?3))"*.
n€l0,by]

By definition, x = d5'%|e/2/%/3. We thus have

2 2/3
P( sup {=n"+ W} > xlogn)™) > P( sup {W(n)} > 5(|ogn)2/3(8_do) )
nel0.by] oy 1

where sup.q,,1{W ()} has the same distribution agh, |W(1)|. Let ¢ be the
distribution function of W (1). It is well known that 1— ¢ () ~ ¢'(¢)/t ast goes to
infinity so there exists somg such that 1— ¢ (1) > ¢'(t)/2t for all ¢ > to. We thus
obtain for large enough

~ 4 25, 2\t
Py( sup |Zy,(; logn)%3 21_<1_7 —gdog> ’
fO( \j\u?— | dn(])| >)C( gn) ) 257'[82do|Ognn
that converges to one asgoes to infinity since by assumptiafy < 1/(10¢2). This
proves (5.22) and completes the proof of the theorem.

Proof of Theorenb.2 —Let x andy be positive numbers and fixe [0, 1]. Since for
allre[0,1],1— < (1—1)" we have

=y < =yl (5.24)

Fix now r > 1. There exists some lying betweenx and y such thatx™ — y" =
r(x — y)z"~1. Sincer > 1 we obtain

" =y <rlx =yl + ) (5.25)

Let p be some positive number wih> 6 andE|e;|” < co. Fixg > 1/2+3/(2(p —3)).
Let G, be the process defined by (4.8), wh#@fd@s some standard Brownian motion that
satisfies (4.9). Then,

SUp |F, (1) — G, ()| = Op(n¥/P71), (5.26)
te[0,1]
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which implies

SUp |F, (1) — G, (1)|" = op (n~1/6-24/3),
te[0,1]

Let G, be the least concave majorant {@f, (), n € [0, 1]}. Assume firsty < 1. By
(5.24), Lemma 2.2 and the latter equality,

1
/ 1Gu() = GO = [Fu0) = Fy )| | dt =0p (i3 (5.27)
0
Assume nowy > 1. From (5.25),

1
J]16:0 =G0l = |0 - o a
0

1
<2q sup [F(1) = Ga(1)] / (216 (1) = Gu(®)] +2|Fu(t) = G, (D) dr.
- 0

Let ¢, = (cologn)Y/® for some large enough positive real numlgrand for every

t € [0, 1] let ch (t) be the least concave majorant at time zero of the process (5.19).
For allz, Zﬂ @®H =0 andfcn () is less than or equal to a random variable distributed as
X (0), the least concave majorant at time zerd-ef;> + W (), n € R}. By Lemma 3.3
there thus exists som®, > 0 such that

-5 -1
sup EY4 |z, 0" < C,.
te€[0,1]

By Lemma 5.1 and (5.21), there thus exist some positiyand K, such that for every
t€[0,1]
EY |G, (1) — Gu(n)|"

<A, [nreE 4+ nmB8 4 pt3a D721 exp(— K, ).

It then follows from (5.26) that
1
/ (21Gt) = Gu ()] + 2| Fat) — G(0)|)" dt = Op (n=2/3+213),
0

Therefore, since > 6, (5.27) still holds in the case whege> 1, which implies

1 1

/ Fo(0) — By ()| dit = / 1Got) = G| di + 0p (nY6-273)
0 0
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for everyg > 1/2+ 3/(2(p — 3)). One can prove in the same way that

—-q/3
1 Z., ()" dt + op(n™Y/°)

1 1
24/3 Ao [ S©
n 0/]Gn(t) G,()| dt_o/‘ >

foreveryg > 1/2+ 3/(2(p — 3)). Theorem 5.2 then follows from the following lemma
(recallo =1). O

LEMMA 5.2. —Let W be some standard two-sided Brownian motion fldte a twice
differentiable function oifi0, 1] with bounded second derivative aimd, | f'(¢)| > 0. Let

= (cologn)?/® for some fixed positive real numbeg and for everyr € [0, 1] and
n €N, let ch (t) be the least concave majorant at time zero of the pro¢e4®) If ¢q is
large enough then for ay > 0 on the one hand,

S0

—q/3
> dt> =0, (5.28)

1
ILrTgOn (/ (E|Ze, (0)|" —m,)
0

and on the other hand
1 /
(]I
2
0

wherel'2 = 2k, [o | f'(1)/2|~24+D/3 4t and wheren,, andk, are defined by3.4)

/3
(1Ze, 0| = E|Z, 1)) dz) L N(0.T?) asn— oo, (5.29)

Proof. —Fix ¢ > 0. Let X(0) be the least concave majorant at time zerd-of? +
W(n), n € R} and for everyd > 0, let X,(0) be the least concave majorant at time
zero of {(—n? + W(n), |n| < 2d}. It follows from scaling and time homogeneity
of Brownian motion that for alk € [2c,n=/3, 1 — 2c,n=Y3], Z, (¢) is identical in
distribution to )A(dn(,)(O) where d, (1) = ¢,| f'(t)/2|%3. Moreover, for allz € [0, 1],

Z. (1) >0 andZ, (1) is less than or equal to a random variable dlstrlbuted(5®
From Lemma 3.3, sqp[Ol IE|Z (1|4 is thus finite. Also, sup g 1 E|an (0)|4 is finite

since 0K an(,)(O) X(O) Therefore,

—q/3 1 —q/3
dt = /E’an(t)

dt + O(cnn_l/3).

Cn

Since 0< )?dn(,)(O) < X(0) we have

[E[X4,00]" —E[XO'| <E(XO0)|"15, | 050"

Let ¢ be some positive real number with jinf’(¢)| > ¢. By Lemma 3. 3E[X(0)|” is
finite for all p > 0. By Hélder’s inequality and Lemma 3.2 there thus exists sdge 0
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such that
IE|X 4,0, (0)|* —E|X(0)]7| < A, exp(—d,(1)3/4) < Agn=0/1®,

If ¢ is large enough (that is) > 8/(3¢?)) then

1 ’ —q/3
lim nl/6/(E|)A(dn(z)(0)|q —E|X(O)|q> fz(t)

n—oo

dt =0.

0

So we obtain (5.28) and it remains to prove (5.29). In the sedu€t) denotes the
random variable
-q/3 N

(126, O = E|Z, 0)]").

Yn(t) = ‘f/z(t)

By Fubini’s Theorem,

1 11
3 F1(@0)f'(s)
var(O/Yn(t)dt> _20/3/‘74

For all ¢, ch (1) only depends on the increments Bf between times — 2¢,n~%°
andr 4 2¢,n/3. The increments of Brownian motion are independent so the random
variablesZ,, (1) and Z, (s) are independent whenevier— s| > 4c,n /3. Moreover,

—q/3 R R
cov(|Z.,)|", |Z., ()|") dt ds.

—q/3 R
|cov(|Z., 0)|*

k)

fr@f(s)
4

Ze,()|")] < o0.

sup
t,s

Change of variable thus yields

4

1
n1/3var</Y,,(t)dt> =0o(l) +2
0

n-1/4 0
q

’

Z. (s +n"Y3) ") dt ds.

In the sequel, we assumelarge enough so that /4 > 2¢,n=Y/3. Fix s € [n~Y4, 1 —
n~4] and for everyr € R, let W,(t) = nV/°[W(s + n*3) — W(s)]. Then W, is
a standard Brownian motion and by change of variallg(s) is the least concave
majorant at time zero of the process

L, 1
{ﬁir ”*P?‘

Moreover, for allt € [0, 4c¢,, ], ch (s +n~3) is the least concave majorant at time zero
of the process

X cov(|2cn (s)

1/3

W, (). Il <2cn}.

’ —1/3,y (4/3 ’ —1/3,y(1/3
{_‘w ”2+‘w (W, (1 +1) — W, (). |n|<2c,,}.
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For everyn € R, let X () = —n? + W, (), whereW, is the Brownian motion defined by
W) = | f/(5)/2[Y3W (| f'(s)/2|7%°n). Letd, = c,| f'(s)/2|?° and for everyu € R,
let X4, (u) be the least concave majorant at timef

{=n*+ Wi(n), In—ul <2d,}.

Let denoteX, (| f/(s)/2/%3) — X (|f'(s)/2/%3) by T, (s, 1). Then, T, (s, 1) is the least
concave majorant at time zero of

1/3

FeY 5 1)
H 2 | +’ 2

(Wo(n+1) = W), Inl < 2cn}

Moreover,Z,, (s) = X4, (0) so by Cauchy—Schwarz inequality,

| coV(|Ze, ()|, | Ze, (s +tn73)|") — cov(|X,, Bl
méf,zel/zqzc,, (s + 073" = |T,(5.0)|") (5.30)

Assume firsty < 1. We have (5.24) withr = ¢ for all positive x, y. Moreover, f” is
assumed to be bounded. By Lemma 2.2, there thus exists some pdasitihat does
not depend oy or ¢ such that the right hand term in (5.30) is less than or equal to
C,(n=3c2t)?. Therefore

n

lim n sup[cov(]ZC” (s +tn 3|

")

=0 (5.31)

for all @ < ¢/3, where the supremum is taken oveg [0, 4c,], s € [n ™14, 1 —n~ "4,
From finiteness o | X (0)|” for all p > 0, Lemma 3.1 and the regularity assumptions on
f,we have

Cn

— cov(| X d,

1 1 4c, _
flo)| e
Y3var /Yn(t)dt =2// cov(| X, NYdtds +o(1).
0 00
Change of variable and Lemma 3.2 finally yields
1
nli_)moonl/3var< /Yn(t)dt> =T (5.32)

0

Assume nowy > 1. We have (5.25) withr = ¢ for all positivex andy. There thus
exists some positiv€’, that does not depend onor ¢ such that the right hand term
in (5.30) is less than or equal #6,n~*/3c2¢, which implies (5.31) for alle < 1/3.
Therefore, (5.32) still holds in the case thre» 1.

Foralln e N, let L, =n"Y3(logn)3, L =n='3logn and letn, denote the integer
part of (L, + L/)~1. Let ag = 0 and for alln e N and all j € {0, . — 1}, let
azjt1=azj+L, anda2j+2 =apj1+ L. Then, the intervalgay; 1, a2,+2] are the small
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blocs of lengthL;, while the intervaldas;, a»;11] are the large blocs of length,. The
first derivative off is bounded away from zero afijZ,, (¢)|% is uniformly bounded in
n andt. So there exists some positivg such that

1 2
E1/2<n1/6/Yn(t)dt> <n'®|1 — agy, |A,. (5.33)

a2Np

By definition, for all j € {0, ..., N,}, az; = j(L, + L;). We thus have +- L, — L, <
azy, < 1 and therefore the rlght hand term in inequality (5.33) converges to zero as
goes to infinity. LetS, be defined by

a2/+2

S, —nl/ez /Yn(t)dt.

J 0112]+1

The random variableE, (z) are centered at expectation and therefore

azj+2 aziy+2
E(S)?=n"*)" / / COV(Y,, (1), Y, (s)) dt ds.
b azj+1 azi+1
Foralli # j, 1 € [azi1, azis2] @nds € [azj11, azji2], We havelr — s| > L, s0Y, (1)

andY, (s) are independent wheneveis large enough (that idogn)®/3 > 4c’*). So we
have for large enough

aj4+2 aziy2
1/32/ | cov¥, 0. ¥,(5)) de ds =0,

i#jazj1 agisa

Moreover, | cov(Y, (1), Y, (s))| is uniformly bounded iz and: so there exists some
positive A such that

N,—1 azj4+2 a2j42
n'/3 Z / / cov(Y, (1), Y, (s)) dt ds < n'*N,(L,)?A!
azj+1 azj+1

which converges to zero asgoes to infinity. Thereforek(S,)? converges to zero as
goes to infinity and it follows from (5.33) that

Np—1 azj+1

1/6/Y (1) dt =n"/® Z / Y, (t)dt + R,,

2j

whereEY?(R,)? converges to zero as goes to infinity. We shall now use the central
limit theorem under Lindeberg condition. The random variablgs= n'/® Jea Y1) dt



240 C. DURQT, A.-S. TOCQUET / Ann. I. H. Poincaré — PR 39 (2003) 217240

are centered at expectation and admit finite variance. Moreover, these random variable
are independent wheneveris large enough (that is whenevdogn)?/® > 4cé/3) and
by (5.32)

N,—1
i _ 12
nILmoovar< E . 5,1,]-) =T
]:

By Hdolder's and Markov’s inequalities, for ail> 0
N,—1 N,—1
D O EE g, 58) < D E(1€1%)8 7
j=0 j=0

Since there exists som&, > 0 such thatE (|, ;|°) < Ajn'/?L3, the right hand term of
the latter inequality converges to zeroragoes to infinity for alls > 0. By the central
limit theorem under Lindeberg condition, we thus have

N,—1 .
Z %-n,j —>N(O’ F;)’

j=0

which completes the proof of the lemman
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