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ABSTRACT. — We prove that the total variation distance between the cone measure and surfac
measure on the sphere df is bounded by a constant timeg\In. This is used to give a new
proof of the fact that the coordinates of a random vector on¢fhephere are approximately
independent with density proportional to €xfi¢|”), a unification and generalization of two
theorems of Diaconis and Freedman. Finally, we show in contrast that a projection of the surfac
measure of thé’, sphere onto eandomk-dimensional subspace is “close” to thelimensional
Gaussian measure.
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RESUME. — Nous montrons que la distance de la variation totale entre la mesure du cone
et la mesure d'aire sur la sphere dg est bornée par une constante fojs/k. Cela fournit
une nouvelle démonstration du fait que les coordonnées d’'un vecteur aléatoire dans la sphé
de ¢/, sont approximativement indépendantes avec une densité proportionelle-d@Xp ce
gui constitue une unification et une généralization de deux théorémes de Diaconis et Freedma
Nous montrons ensuite que la projection de la mesure d'aire de la sphysuteun sous-espace
aléatoirek-dimensionnel est “proche” de la mesure Gaussidgndinensionnelle.
0 2003 Editions scientifiques et médicales Elsevier SAS

1. Introduction

In this paper, we study projections of the surface measure off,thghere ontd-di-
mensional subspaces. Fpr= 2, all these projections are clearly equal. By a result
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of Diaconis and Freedman [7], far small with respect to: this measure is close,

in total variation distance, to the Gaussian measure. For geperal, we prove in
Section 4, that for aandom choice of k-dimensional subspace, the projection will
be asymptotically close to the Gaussian measure. On the other hand, the céncrete
dimensional subspace spanned by the firgiordinates exhibits a different behavior: the
measure will be asymptotically close to the product measukd.ofl. random variables

with density proportional to exp-|¢|”). This result unifies and generalizes two results
of Diaconis—Freedman, namely, the above statement in the gase§ andp = 2.

A direct attempt to prove such a statement, leads instead to a similar statement, wit
the surface measure replaced by the so-called “cone measure”, a distinction that do«
not appear in the casgs= 1, 2. (The cone measure is a measure for which a natural
polar coordinate integration formula holds — see Section 2.) In fact, the above statemer
was proved by Rachev and Rischendorf in [15] (see also [3] and [14]) for the cone
measure, and was conjectured to be true also for the surface measure. This problem w
solved positively by Mogul'skiin [11]. In this paper we propose a different approach
to this problem. Our main result is that the cone measure and surface measure are
fact close in total variation distance for large Since the cone measure has a simple
probabilistic representation, this result shows how one can approximate the geometri
surface measure by the more concrete probability distribution given by the cone measur
The above result is applied to give a new proof of Mogul'sligolution to the problem
posed in [15]. In fact, we show that the solution follows from the results of [15] (although
it was conjectured there that it requires a completely different proof).

Section 4 deals with a version of the so-called Randomized Central Limit Theorem
for the ¢’ sphere. This theorem was studied for product measures by the second-name
author in [16,17]. For uniform measures on convex bodies in isotropic position, a one-
dimensional version of it was proved by Antilla, Ball and Perissinaki [2] (see also [9]
and [6]). Our results hold for general isotropic measuresRénsatisfying a certain
negative correlation property, which arises naturally from the proof in [16] (in fact,
it is a standard technique in probability theory to generalize results known to hold
for independent random variables, by assuming that the variables involved are onl
negatively correlated). The usefulness of this property was also noted in [2], where i
was shown to imply the so-called Central Limit Property for the volume measure on the
ball of £7,. In Section 5 we discuss several related open problems.

2. Cone measure and surface measure

For every star-shaped body c R”, one can define two natural measures on the
boundary ofK. One is the regular surface measure and the other is the “cone measure’
The cone measure of a subgedf oK is the volume of0, 1]A, i.e. the cone with basé
and cusp 0. Both these measures have appeared in various contexts in the literature. M
notably, the cone measure appears in the Gromov—Milman theorem for concentration c
Lipschitz functions on uniformly convex bodies. As far as we know, the relation between
these two measures has not been studied; each measure appears naturally in differ
contexts, and most authors have been satisfied with an ad hoc choice of the measu
most suitable for their particular application.
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In this section we will show that, for the case of #tjesphere(p > 1), these measures
are asymptotically close. More precisely, the total variation distance between the twc
measures is at most a constant (depending)times 1/ ,/n.

We recall some basic facts about the total variation distance PE@ probability
measures on a measurable spéeeF), the total variation distance between them is
definedag|P — Q|| =2sufd|P(A) — Q(A)|: A e F}.If P, Q are absolutely continuous
with respect to some reference measuyevith respective densitieg and g, then the
total variation distance is known to be equalftg f — gl dx.

Fix p > 0 and an integer. Recall that the’) norm is defined by:

n 1/p
Ixll, = (Z |xl-|P> :
i=1

Thee’; sphere is defined byﬁ(ﬁ’;) = {x e R"; ||x||, =1}, and thee’;, ball is defined by
B(t}) ={x e R"; ||lx||, < 1}. We denote by the normalized surface measure$i’)),
and by the normalized cone measure. In other words, for every measutablg(¢,)
we put:

1

Here “vol” refers to the Lebesgue measureRin and[0, 1]A = {ta: a € A, 0<r < 1}.
The measure@ has a useful probabilistic description. Lebe a random variable with
density ¥(2I'(1+1/p))e " (t eR). If g1, ..., g, are i.i.d. copies of, put:

n
S=>lgl”,
i=1
and consider the random vector:

_ 81 8n n
X = (—Sl/l’""’ Sl/l’> e R".

The following result appeared in the paper of Schechtman and Zinn [19], and latel
independently also in [15]:

THEOREM 1.— The random vectorX is independent ofS. Moreover, for every
measurableA C S(¢)) we have

w(A) = P(X € A).

We will now estimate the total variation distance between the surface measure an
cone measure o8i(¢}).

In this and in what follows¢ will denote a numerical constant, which may change
in each particular appearance. Likewisg,will denote a constant depending on the
parametep > 0.
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THEOREM 2. — Forall 1< p < o0, onS(E’;,),

Cp

-0l < L.
Il II\ﬁ

The measureg ando are in fact equal fopp = 1, 2, andoco. Since we are mainly
concerned here with the probabilistic applications, the discussion of the constant
is postponed to a later (more geometrically oriented) paper [13], where it is proved
that there is an absolute constafit> 0 such that for allp > 1 we can takec, =

cal— %)|% - %|m’_’£. In particular, ¢, is bounded forp > 1. See Section 5 for a
discussion of the caseOp < 1.

We start with some general facts concerning the cone and surface measures. F
the sake of greater generality, and in anticipation of future developments, we stat
these results for a general convex boklycC R". Let o be the normalized surface
measure orkK, and letug be the normalized cone measure @K, defined as before
by 1k (A) = "°\'fgﬁ’,§])m. We will denote byj| - || x the Minkowski functional (norm) oK .

The cone measure can be thought of as the measure for which a polar coordina

integration formula holds:

PrROPOSITION 1. — Let f:R" — R be an integrable functionw.r.t. Lebesgue
measure. Then

f@)ydx=n-vol(K) [ r"™* | f(r-2)dux(z)dr.
/ [

R” 0

Proof. —By approximation, it is enough to verify the formula for indicator functions
of sets of the form(a, b)E, wherea < b and E C dK. For such sets the formula is
trivial. O

NoOTE 1.— An equivalent formulation of Propositiof, is the statement that the
mappingx — (x/|lx| g, llx|lx) transforms Lebesgue measure Bh into the product
of the cone measure &K and the measure - vol(K) - r"~1dr on [0, 0o).

In the next lemma we compute the density of the surface measure with respect to th
cone measure.

LEMMA 1. - o is absolutely continuous with respectit@, and its density is given
for almost every € 9K by

dox n -Vvol(K)
p (x) =
Uk aredd k)

VA 1)) ||,

Where|| - ||» denotes the Euclidean norm @.

Proof. —We will denote byA the (not normalized) surface area measuré kfand
by C the unnormalized cone measureadt (i.e. C(F) = vol([0, 1]F)). We will also
denote byB(x, t) the Euclidean ball with radiusand centex € R”. The volume of the
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k-dimensional unit Euclidean ball is denoteddy: Recall that the measureis defined
for any openl/ C R” by

vol(U N 3K + B(0, ¢))

AU) =Iim
( ) e—0 23

It is a classical fact (see, for example, [10] Theorem 16.2) that almost evedK is a
density poinbf A, in the sense that

A(B(x,))

e—0 g"—la)n_l

1

Fix x € dK which is a density point ofA, and which is a point of differentiability of
Il - llx (@almost every € K has these properties). This means that we can write:

lx+ yllxk =14+ (VI - k) x), y) +r(y),
where:

p(8) =su

rWl. g _ ylls < 5} 0
lyll2 8—0

Let H be the tangent hyperplane &K at x, i.e. H = x + {V(| - lx)(x)}*. For
simplicity definez = V(] - [lx)(x). It is well known that(x, z) = 1 (to see this note
that 1+ 6 = ||x + 8x||x = 1+ 8(x, z) + r(8x). Division by § and taking the limi — O
gives the required result.). Similarly, for eveyye 0K, |(z, y)| < 1 (in other wordsz is
the norming functional ok). Now, for every O< & < min{1/(2|z|l2), llx|l2} we claim
that:

[0, 1](B(x, &) N9K) C [0, 1](B(x, & + 4| x|26p(e)) N H).
Indeed, take & r < 1 andy € K with ||y — x||» < e&. Then,

(y,2)=1+(y—x,2) 21—e¢llzl221/2,

and 1= [lylx =1+ (y — x,2) +r(y — x) so that|(y — x,z)| < ep(e). If we put
v={(y,z) 'y ands =1(y,z) thenty =sv, 0<s <1, v e H (since (v — x,z) =
(v,2) Xy, z) —1=0) and:

1

y

—1]” I
0o e .oy R
<e+2ep@)(Ixll2+ ) < &+ Alxll2ep(e),

lv—xl2= —Xx

<y —x||2+\

and this proves our claim.
To prove a reverse inclusion, fix> 0 such that — 2||x||,ep(¢) = § > 0 and take
y e H with ||y —x|| <é and O< 7 < 1. Now,

Ivlk =1+(y—x,2) +r(y —x)=1+r(y —x),
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sothat 1< ||yllx < 1+6p(8) < 1+4¢ep(e). Hence, ifwe pub = y/|y|lx ands =ty k
then O<s <1+¢p(e),ty =sv,v € dK and as long a8 < || x||2:

lv—=xl2<lly —xll2+ - 1‘||y||2 <8+ 2|xl2ep(e) = €.

‘ 1
yllx
We have proved that as long ass small enough:

(14 ¢ep(e))[0, 1](B(x,e) NAK) 2 [0, 1](B(x, & — 2||x|l2ep(e)) N H).

Note that for everya > 0, [0, 1](B(x,a) N H) is a cone with cusp 0 and base
B(x,a) N H. The (perpendicular) height of this cone(isx)/|zll. = 1/]Iz||2, so that:

-1
a" Wp—-1

vol([0, 11(B(x, @) N H)) = ="

Using this observation and the previous two inclusions we get thatsarall enough:

(e = 2llxll2ep ()" wus
(1+ep(e))” n|zll2

(e + 4llxll2ep ()" wn1

< C(B(x,e) NOK) <
nlizll2

Hence:

im C(B(x,e)N3K) _ 1

e>0 e, g nlIVA - ) )l2
Finally using the fact that is a density point ofd:

dox _vol(K) . A(B(x,e)N3K) n-vol(K)

dix ~ AQK) S0 C(B(r.e)N9K)  AGK)

VAL IO@], O

Applying Lemma 1 to the special case®f¢’) (and reverting to our earlier notation),
we have easily

LEMMA 2. -—

1/2
do  dopn) - _
- = . (x):Cn,p' Z|xl_|2p 2 ,
dp d,bLB(e’;,) i1

whereC, , is a constant depending onand p.

Proof of Theorem 2. By Lemma 2, we are faced with the problem of bounding the

expression
ln—ol= |

S

du,

n 1/2
Cn,p (Z |-xi |2p—2> -1

i=1

whereC, , = [fs(l,;)(zyzl |x;127=%)Y2 417 is merely a normalizing constant. Now
fix ¢ = 2p — 2. Note that for any random variablé and anya € R, E|Z — EZ| <
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E|Z —a| 4+ E|EZ —a| < E|Z —a| + E(E|Z — a|) = 2E|Z — a|. Using this fact, and

using the fact that for > b > 0, \/a — /b = ﬁ—l@z < % we calculate:

-1
It —oll = /‘( / IIyIIZ/ZdM(y)) IIXIIZ/Z—l‘du(x)
seny O sien)
-1

=( [ wwgrane) [

Iy = [ 112 | duco

S(ey) S(e) S(e)
-1 1/2
<2( / IIyIIZ/ZdM(y)) / ||x||z/2—( / IIyIIZdu(y)> dpu(x)
N S(p) NS
-1 —1/2
<2( / IIyIIZ/Zdu(y)) ( / IIyIIZdM(y)>
S(ey) S(ey)
< [ iz = [ g dic)|due
S(en) S(en)
-1 —1/2
<2( / IIyIIZ/ZdM(y)) (/nyngdu(y))
s(en) s(en)
2-1/2
<| [ iEanco - ([ wiganm) |
S(ey) S(ey)

The last inequality used the fact that for any random variableE|Z — EZ| <
VEZ?2 - (E(Z))2.

We now go back to the probabilistic realization of the meagugéven in Theorem 1.
Using the notation of Theorem 1, plit=3""_, |g;|?. Note that the independence &f
and X (defined as before) implies in particular that for any O, fs(g,;) X159 dp(x) =
E[T%/§%/P] = (ET*)/(ES%4/P). Using this observation, and Theorem 1, the above
inequality translates into:

w—oll <2

ET)V? (ES/2P)(ES/P)Y/2 ET2  [ES%/p
ETY2  (Es2/mY2  \(ET)2  (ESe/r)?

The first fraction in this expression is bounded by a constant (dependipg. tmdeed,

EDY?  Elg)Yn _ Ela)Y?Vn
ETYVZ —  ET%Z  E[(gl"? ..., g1,
(Elg1)"2/n _ (Elga)Y?n

= =Cp.
T EI(g1le2, . 18l ln//n n-Elga|e/? !

The second fraction is trivially bounded by 1, by Jensen’s inequality. To conclude our
proof of Theorem 2, we thus need to bound the radical by a universal constant time:
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n~12. Note that:

ET? _ nElgl +n(n — DEIgID? | cp
(ET)2 n2(E|g|?)2 ST

. . . . 2
for somec, € R, and the required inequality follows sm%;‘j%;2 >1. O

3. The asymptotic distribution of the coordinates of arandom vector on the £}
sphere

In this section we apply the result of the previous section to prove that for a random

vector onS(¢}) (chosen according to either the surface or cone measures), the joint
distribution ofk of its coordinates will be close in total variation to the lawkafi.d. r.v.s
having density 1(2I'(1+ 1/p))e " (r € R), as long as = o(n). More precisely, for
any k we will show that the variation distance is of the ordé¢n for the cone measure,
andk/n + c¢//n for the surface measure. These statements are essentially the result
of [15] and [11] (for the surface measure the estimate in [11] is also of érderso
that our proof gives a somewhat worse estimate than that of [11] in the kagggn.
In Section 5 we suggest a method which may lead to an improvement of this estimate.)
This application is a generalization of results that appeared in [7]. For the sake of a mor
streamlined presentation of these results, and since we wish to emphasize the simplici
of the proof, we will repeat the proof of a technical calculation that was needed also
in [7] and [15]. We will then reduce the problem to a one dimensional computation.
A reduction argument was also needed in [7] and [15]. We give here a direct and
simple argument which achieves such a reduction, and this makes the presentation st
contained.

In what follows, f7 will denote the density of a r.\Z.

The following lemma is essentially contained in [7]:

LEMMA 3.— Assume thab <o < B and 8 > 1. Let X be a r.v. which is(a + 8)
times a Betéx, §) r.v.; that is, X has density

C'(x+B) x \*! x \/1!
_ . (1 <x< :
) = BT @ (B) (a+ﬁ> ( a+ﬁ> Osx<a+h

and letY be an r.v. with Gamm@, 1) distribution, that is

Sr(x) = N e x* 1 (0<x <o0).

')

Then the variation distance between the distributionX @indY is at most“%ﬂ.

Proof. —

fxx)  T@+p) ex<1 x

B—1
)~ @+ BT P a+ﬁ> Osx<ath)
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fxx) _ 4. _ T+ _ R
OF fiay = A~ h(x), whereA = ciperr; andhax) =e'(1 - 5)"" O<x <o+ B).

First, note that log (x) = x + (8 — 1) log(1— ;) attains its maximum when=« +1,
therefore logi(x) <o +1+ (B — 1) Iog(fT‘;) (0< x <+ B). Next, we bound logt

using the following version of Stirling’s formula:

1< T(x)/(V2r x* Y2 L /1%

(see the monograph by Artin [1]).
logA = —alog(a + B) + logT' (e + B) — logT'(B)

g—alog(a+ﬂ)+<a+,3—%> log(ar + B) — (o + B)

1
- (#-3) 00+ 5+ 1,

-(s-3) '°9(%)‘“+Wl+m

Adding the two bounds we have:

log(Ah(x)) <1+ (B—1) Iog(%) +
:1+(ﬁ—1)|09<1— %) +—Iog<1+—> +W1+ﬁ)

Lo 1 2414112 a+3
B 28 12a+p) B 2B

Now exponentiating, and using the fact that foc@ < 2, € < 1+ 4x:

12(«x + B)

< 2.

Sx(x) _1<e%_1<20l+6‘
fY(x) B
Hence
||Px—Pyn:/!fx(x)—fy(x)!dx:/ I ] o d

Sr(x)

0

frx) B

where P, denotes the distribution of a r.€, anda™ = maxa,0). O

0
:2/00<f"(x) 1>+fy(x)dx g Gat12
0

Now let k < n. Let X = (X4, Xo,..., X,,) be a random vector o8 (%), chosen
according to the cone measure. Denote its firsbordinates by’ = (X1, Xo, ..., X;).
Let G = (g1, g2, ...,g,) be a random vector of i.i.d. r.v.s with density (2I"(1 +
1/p)e’, and let G’ = (g1,...,gx). We wish to estimate the variation distance
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| P,,x — Pll, for normalization constants, which are of the ordem?. For
convenience we choosg = (n/p)Y/?.

LEMMA 4. - DefineW = ||anX’||g andZ = ||G’||g. Then
| Pa,x' — Po'll = | Pw — Pz||.
Proof. —Put §' = Z'}=1Igj|”, 8" =3 _t:118;17. We will denote by the density

of §”, and by, the density of the random variables’/(S’ + r))¥/?, wherer > 0.
Define:

1 o0
T = NolBEn) - 0/ P dr

We first claim that the density of’ is H(||x||,). Indeed, take a Borel subsBtC RF.
By Theorem 1,
S//)

P(X'€B) = P(L € B) —EP(L €B
- (S + §"lr - (S + §"Mlr

Therefore, using the independence $f and G’, and the independence ¢f and

G'/(S"HY? (which is Theorem 1 ifR¥), we get:

P(X' eB)_/¢(r)P

((S/+ P )dr
s’ 1/p ’
p(( ) ¢ € )dr
S+r) (SHYr

s’ 1/p G
(( ) eB S’)]dr
sS+r) (e

/
(5H/r IS B)du dr

o) | Yrw)P (u :

¢(r)

0\8 0\8

/5 (u)u( )du dr

I
O — g O — 3 O — 3 0\8 0\8

n-vol(B(€%)) - u"~ 1H(u)u( )du—/H(llxll )dx.

In the last two steps we used, respectively, Fubini’s theorem, and the polar coordinat
integration formula of Proposition 1.

Having established the claim about the densitx6fthe lemma will follow by another
application of Proposition 1:
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Py — Pl = / fux: — forldx

k k-1 e
— k-vol (B(¢) / H(r/an) GraT e e
0 NG,
7. k i k-1 1 _ 1 —rP
=k Vol(B(Ep))/r anH(r/an) —(21"(1+1/p))" dr

0
=/!fw(r> — f)|dr =[Py — Py].
0

Where in the last equality we used the fact that the densityWofis equal to
kvol(B(£4))r*"*H(r/a,)/a, and the density o is proportional to & (these facts
also follow from Proposition 1). O

Remark1. — In the more abstract terminology of the Diaconis—Freedman paper, we
have shown that the sigma-field R pulled back from the Borel sets iR by the
mappingu — ||lu|, is “sufficient”, and this implies the lemma.

Remark2. — SinceS’ and §” have Gammak/p,1) and Gammd(n — k)/p, 1)
distribution, respectively (see below), the denshy that appeared in the proof of
Lemma 4 can be computed. We get that the density'ait x B(E’I‘,) is:

% Y (@ ) 7

Z has distributionGammadk/p, 1), since it is a sum of i.i.dGammdl/p, 1)
components. The distribution ¥ is (a rescaling of) a Beta distribution — this can be
seen again using the Schechtman—Zinn realization of the cone measure, which implie
that W has the same distribution as

H(llxllp) =

Zk 1g1p
gl a8l

P
a,

an expression of the form,U /(U 4 V) whereU andV are independent Gamma r.v.s
with the same scale parameter. ThHiishas distributiona? times theBetak/p, (n —

k)/ p) distribution. The total variation distance can therefore be estimated by Lemma 3
above, wherex = k/p, 8 = (n — k)/p. Finally, we have (with our choice af, =
(n/p)Y? as above):

THEOREM 3. — For 1 <k <min{n/2, n — p}, the following estimate holds

4 +12p

| P, x — Porll <
n—=k
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Note that the above discussion is for a random vecto§ @) chosen according to
the cone measure. Now, I&t = (Y1, Yo, ..., Y,) be auniform vector ons(¢)) — that
is, a vector chosen according to the normalized surface measurg! £etYy, ..., Y}).
Combining Theorems 2 and 3 we have:

THEOREM 4. — For 1 <k <min{n/2,n — p}, the following estimate holds

4k+12p+ Cp
n—k Jn'

| Po,y — Porll <

4. Random projections

This section deals with projections of the surface measur§(df) onto random
subspaces. This section differs from the previous sections in the techniques used ar
the nature of the results proved.

As we noted in the introduction, these projections will be (with high probability)
approximately Gaussian for high dimensions, as long as the subspace is of dimensic
much smaller tham. The estimates we give will not use the total variation metric, but
rather a different metric between measures:

Definition 1. — Given two probability measured and Q on R", we define therT -
distance between them as:
T(P,Q)=sup|P({y: (x,y) <1}) — Q({y: (x,y) <1})|

xeR”
=sup{|P(H) — Q(H)|: H affine half-spacg.

The use of this metric in the present context was suggested to us by B. Tsirelson.

We will begin by formulating a general principle, which states a “Randomized Central
Limit Theorem” for probability measures IR" satisfying certain conditions. It should
be pointed out, that this result holds for more general measures than volume measur
on convex bodies, and is not one-dimensional. Therefore, our result is more general the
the treatment of the so-called Central Limit Problem for Convex Bodies given by e.g.
Antilla, Ball and Perissinaki [2]. This generality, however, leads to a worse dependence
one in Theorem 5 below (see also the remark following Theorem 5).

Let us recall some basic definitions: Given a compactly supported probability measure
P onR", we say that it is isotropic, if for every e 5"~ 1,

/(x, 0)2dP(x) = 1.
Rll
We also say thaP has the square negative correlation property, if for evegyilj < n:
/xiszZdP(x) < (/xfdp(x)x/x]?dp(x)).
R” R” R”

For everyk < n we denote byG (n, k) the Grassmanian Manifold of alldimensional
subspaces dR”, and by, , we denote the normalized Haar measureGan, k). For
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everyk-dimensional subspade C R” we denote by Prgj(P) the orthogonal projection
of P onto E. In what follows, y, is the standard-dimensional Gaussian measure. We
can now state the main theorem:

THEOREM 5.— Let P be a compactly supported, non-atomic isotropic measure
on R" satisfying the square negative correlation property. Define

= </||x||j{dP(x)>l/4.

Rn

Then for every > 0 andk < c1e%n?/B* the following inequality holds

Cgi’l284
B* )’

Jox ({E € G, ) T(Projg(P), yi) > &) < Cg—zexp<_

wherec, c¢o, c3 are numerical constants.

Remark 3. — WhenP is the normalized volume measure on a symmetric convex body
K c R*, andk = 1, theg*-term in the above estimate can be improved4oThis was
proved in [2] using Busemann’s theorem. It is unclear whether a similar estimate can b
proved in the full generality of the assumptions of Theorem 5.

In what follows, we will always assume th&tsatisfies the above conditions. Denote
by w the normalized surface measure on the Euclidean sfiete

LEMMA 5.— Leth:R — R be a bounded Lipschitz function with constdntThen
for everyn >3

B?L +50Sup g |h(x)]

’ / /h( x,0)dP(x)dw(0) — /hdyl

n
sn—1R"
Proof. —
‘ / /h(x 0 )dP(x)da)(@)—/hdyl
gi-1R
_ //h<||x||2<L,9>>da)(9)dP(x)—/hdyl
Ixll2
R” n—1 R
- / / (Ix1262) deo(®) d P (x) — / hdy
R gn-1
<|[ [ niio) do@ ape - /h(ﬁel)dw(9>‘
R gn-1 sn—1

/h(ﬁ@l)dw(e)—/hdyl,
R

sn—1
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where we have used the rotational invariance of the measuyf denoting the first
coordinate ob).

The second summand can be estimated by the speciapbcask k = 1 of Theorem 3
(which is in fact part of the original statement proved by Diaconis and Freedman) as
follows:

50sup g | (x)]

n

[ nao)do® - [har <
n—1 R

Note that this is where the assumptioe 3 is used.
The first summand is estimated as follows:

’/ [ mlix1:61) do®) P ) - /h(ﬁel)dw(m]

R gn—1 sn—1

<L/ / lxllz — /7 |161] doo (8) d P (x)

R" gn—1

=L<Sn[1 |61|dw(9>) (IRZ|||X||2—\/E|CZP(X)>
L( / efdw(m)l/z(/!||x||z—ﬁ|dP(x>)

S)lf

f/|||x||2 —Vi|apPw) < [[1xlE -] dP )

R® Rn
" 2 1/2
= —/ 1)]dPx) < /(Z(x,?— 1)) dP(x)
Rre | i=1 Rn i=1
L n 1/2 LBZ
SE (Z(x?—1)2+Z<x?—1)<x;’-‘—1>>dP<x> L
T lg Nt i#] n

Where in the last inequality we used the assumption thit isotropic and the square
negative correlation property.

In order to prove Theorem 5 we will apply the following concentration inequality due
to Gordon [8] (see also [18]). In both papers this inequality is proved in the text but is
not specifically stated as a theorem. A weaker version of it (with a worse dependenc:
on §) is a classical interpretation of Levy’s isoperimetric inequality on the sphere (see
for example [12] Theorem 2.4). For the reader’s convenience we will sketch the proof.

THEOREM 6.— There are absolute constants, ¢, c3 > 0 such that for every
f:58"~1 — R which is Lipschitz with constarit (with respect to the Euclidean metric
on §"1), for everys > 0 and for everyk < c18%n/L?:

An,k({E €Gm,k): Ixe Ens"?

0= [ fordawm)|>s}) <L,
Sn—l
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Denote byes, ..., ¢, the standard basis &' and let{X;;; i =1,...,k, j=1,...,n}
be i.i.d. standard Gaussian random variables. For everys*~! consider the random
vector:

k n
Ya = Zai ZXijej.

i=1 j=1

Denote also bys = 3>7"_; X1,e; the standard Gaussian random vectaRfn
In [18] the following result was proved for norms. Actually, the proof only uses the

fact that a norm is Lipschitz (the parametem [18] is precisely the Lipschitz constant
of the norm). For general Lipschitz functions, the following proposition is the inequality
obtained in the second line of p. 276 of [18].

PROPOSITION 2. — There are absolute constantg c¢,, cz > Osuch thatifi :R" — R
is Lipschitz with constank , then for every; > 0 andk < ¢1n?/K?

P( sup [a(Y,) —Eh(G)| > n) < coe™ /K",

aeSk-1

Sketch of the proof of Theorem 6By translating f, we may assume without loss
of generality that for every € S"~1, | f(x)| < 2L. Let I = [41 f dw. Define F, =
F(Ya/Yall2). Clearly, whena|2 = 1, EF, = I andE||Y, |2 = E|Gll2 = E, ~ /n. By
standard arguments,

Ank ({E eGn, k) Ixe ENS™?

- [ f(y)dw(y)] . 8})
Snfl

:P( sup |Fa—1|>6).

aeSk-1
Define f(x) = |lxll2f (x/lx]l2). Sincef is bounded by 2, f is Lipschitz with constant
4L onR™ \ {0}. Moreover,E f(Y,) = I E,,. Now, by Proposition 2:

P( sup |F, — 1| >3)

aeSk—1

F, F(Y,) — IE,
<P< sup 'E ||||Ya||;_~—En|+ sup MM)

aeSk=1 Ln aeSk-1 n

SE, - SE,
< P( sup [[Yallz— En| > +P( sup|f(Y) —IE,|>
aesk-1 4L aeSk—1 2

2p2 2 2p2 2 /82,72
< Cze—cgé E;/(16L%) + Cze—cgé E;/(64L%) g C/Ze—c3n8 /L ,
as long as < ¢;8?E?/L?, which implies the required result.c
In order to apply Lemma 5, we introduce the following functions:

1 x <t
hyq (x)= % t<x<t+a (teR, a>0).
0 t+a<x



256 A. NAOR, D. ROMIK/ Ann. I. H. Poincaré — PR 39 (2003) 241-261

It is clear thath, , is Lipschitz with constant A. The following simple approximation
result is the key to the application of Lemma 5:

LEMMA 6.— Lete > 0. Then there exisV = |1/¢| numbersy, t,, ..., ty € R with
the following propertylf v is a measure oiR such that foralli =1,2, ..., N we have

‘ / o dv — / hye dya
R R

Then T (v, y1) < 6¢. (Note that in dimensiorl the metric T is exactly the usual
Kolmogorov metrig.

<Le.

Proof. —Denote as usuab (t) = y1((—oo, t]). Taket; = ®~1(g-i). Note that for some
0<06 <1,

liz1—ti=¢- (CIJ_l)/(i +0-8)>e2m >,
And therefore

v((=00,) < [y edv < [ hydyite <) +e =) + 2.
R R

Similarly
U((OO, Ii]) > d(1) — 2¢.

We have shown that((—oo, ;]) — ®(#;)| < 2e fori =1,2,..., N. It is now easy to
show that this implie$v((—oo, t]) — ®(¢)| < 6¢ for all r € R, as required. O

Proof of Theorem 5. F0 begin with, note that since is isotropic, for every
h:R — R which is Lipschitz with constantf., the function that maps € R" to
Jra h({x,u))dP(x) is also Lipschitz with the same constant. Indeed, for every distinct
u,veR",

‘/h((x,u))dP(x) — /h((x,v))dP(x)
Rn

Rn

u—uv
<Ll =l [ |{x =0 )dPw)
Rn

u—vv 2
< Lilu—v|?2 x»m
R® 2

Fix ¢ > 0. By modifying the constant;, we can clearly assume thatB0,/n < e <2
(since the metrid is bounded by 2). Note that in this case, sile n'/4, it is easy to
verify that

1/2
dP(X)) = Lllu —v|2.

e 6B?/e4+50 < ea/n

6 n ~ 122"
Now, applying Lemmas 5 and 6 and Theorem 6, we get:
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Mik[{E € G(n, k): T(Projz(P), i) > e}]
=i [{E€Gn,k): JueS"tNE T (Proj,(P), y1) > ¢}]

16/¢]
U {E €G(n k) eSS NE
i=1

< )"n,k

\ [ huerstteanap = [y
Rn R

> 8/6}]

16/¢]
U {E €eGn,k): eSS INE
i=1

\ / e 6, 1)) d P (x) — / / Ty (0, 1)) d P () deo ()
Rn

sn—1Rn

< )\n,k

S E_ 6B?/s + 50}
6 n

16/¢]
<k | U {E eGn,k): eSS INE
i=1
\ / iy 6, 1)) d P (x) — / / e o, 1)) d P () deo ()| > izﬁ}]
Rn sn—1R"

<Cex< cs4n2)
S e P B4 )’

The last estimate uses Theorem 6, which is valid as lorigas,s*n/B*, wherec, is a
(small enough) absolute constant

We will now apply the above general result to the cone measure and the surfac
measure on the sphere df, beginning with the case of the cone measure. The measure
wu is compactly supported and non-atomic, and it is isotropic up to multiplication by a
constant: that is, we need to take the cone measure on&pzmhere other than the unit
sphere — the exact constant is calculated below. But first, we prove the square negati
correlation property, which in this case is quite simple. We will give an analytic proof
of a more general fact. A similar result with the cone measure replaced by the volume
measure on the ball df; was proved in [5] and also in [2]. See also [13] for a an even
stronger result for the cone measure.

PROPOSITION 3. — For everyas, ..., a, = 0:

[ M aneo <] [ 1 duco.
k=1

s(en) =1 )

Proof. —Using (again) the notation of Theorem 1,
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/ I 1% dpx) =E [S_% e 11 nglak]
k=1

s(en) k=1
Hk 1E|g1|a" [li—1 Elga|™
ESTXa%] [ [ESH mme ]/ X
[li—1 Elga|™ _ 11 Elga™

g 1 n n -
[Ty EL(S7 Zimey/ 2y g BS™/P

|gk| - [
—H so=11 [ i dnco.
k= 1S(Z")

Remark4. — Note that the only property used in the above proof is the independence
of S and X, rather than their specific distributions. However, this property is known to
characterize these distributions — see [4].

Because the coordinates ofare y-uncorrelated (an obvious geometric truth) it is
easily seen that for evefye 5" 1,

[ w02 due = [ s2duco.

The right hand side can be calculated, using the methods of the previous sections:

2 g Egf L'@3/p)-T(/p)
xjdu(x) =E - 577 | = - > = .
Qi lgilP)e/r EG /1 1giP)?P  T'(1/p)-T'((n+2)/p)

Define, thereforea, , = [ggjﬁ; : F(;I}:/Z%p)]l/? Take as before a random vector

= (X4,...,X,) whose distribution law is«. Then i, the distribution measure of
Y =a,,, - X,is acompactly supported, nonatomic, isotropic measure. \We now proceec
to calculate the constamt of this measure, using again the log-convexity of the gamma
function (or the case = 2 of Lemma 7):

) r'®G/p)rn/p)
=E|Y|3=nEY{ = na, EX]=na - T'(1/p)T((n+4)/p)
_TWpTrG/p)  T@+2/p® a4

F@/p?2  To/pT((n+4/p)
And so B < ¢ - n¥* wherec is an absolute constant (although the the bound may seem

to depend orp, it is easy to check that it is bounded by a numerical constant as long as
p = 1). Putting all the pieces together, using Theorem 5, we have finally:

THEOREM 7. — Letu be the cone measure aiie’)), and defingi(A) = w(A/ay,p).
Then for every > 0 andk < ce*n

Mk [{E € G(n, k). T(Projz(f1), yi) = e}] < Cexp(—cne?).

Herec, C > 0 are absolute constants.
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The estimate of the total variation distance betwgeando allows us to transfer the
above result immediately to a result fer

THEOREM 8. — Leto be the surface measure &ii¢’), p > 1, and defines (A) =
o(A/ay, ). Then for every > 0 andk < ce’n

Mi[{E € G(n, k): T(Projg(5), vi) = ¢e}] < C,exp(—c,ne?,

wherec,, C, > 0 are constantgwhich may depend op).
Proof. —By Theorem 2, for everf € G(n, k),

. - . - C
T (Projg (1), Proj; (6)) < lu —o|| < —£&.

N

Hence, Theorem 7 implies Theorem 8 as longeas 2c,/./n. By modifying the
constantC),, the theorem follows for every. O

Remark5. — As was remarked in the discussion following the statement of Theo-
rem 2, the results in [13] imply in particular that fgr> 1 the constant<”,, ¢, in
Theorem 8 may be taken to be independeng of

5. Concluding remarks

Several natural questions arise from our results:

(1) We conjecture that any convex bodyRf has a linear image for which the surface
measure and cone measure are close in total variation distance. It seems reasonable t
we can estimate the above distance by a constant multiplg@t 10ur estimates of the
total variation distance between the cone measure and surface measu¢g)are tight
and it is possible to calculate the exact dependence of the constapt§ be interested
reader is referred to the paper [13], in which the first named author studies in greate
depth the precise relation between the surface and cone measuf&4 pn

(2) For the purpose of improving the estimate that appears in Theorem 4, it would be
natural to bound the total variation distance between the projections of the surface an
cone measures onto the fikstoordinates, although we have not attempted to do this.
The concrete density that was computed in Remark 2 may prove to be useful for such a
estimate.

(3) The metricT that appears in Section 4 is just one of many possible metrics on
probability measures that could be used. We can in fact state similar results for the
Kolmogorov distance and other natural metrics. We chose to deal with the rifietric
since this is a natural rotation invariant metric for which the proofs are the simplest. One
might think of Theorem 5 as a measure-theoretic version of Dvoretzky’'s theorem. Our
result is not in complete analogy with Dvoretzky’s theorem, since it does not reflect the
dependence of the dimensiéron p that appears there. The total variation distance is
an example of a very natural metric which our methods seem insufficient to handle.

(4) The Central Limit Problem, is the problem of proving that almost all projections
of the volume measure of a convex bod§ onto 1-dimensional subspaces, are



260 A. NAOR, D. ROMIK/ Ann. I. H. Poincaré — PR 39 (2003) 241-261

approximately Gaussian in high dimension. The results of Section 4 show that in order tc
prove this Central Limit property for a body in isotropic position, it is enough to show
that the cone measure @ has the square negative correlation property. (As was noted
in the introduction, the above fact is also proved in [2].) The square negative correlatior
property seems geometrically plausible whers unconditional (i.e. when the norm of
K is invariant with respect to sign changes and permutations of the coordinates) — thi
can be verified by elementary calculations in dimension 2, but we are presently unabl
to prove it for arbitrary dimension.

(5) From the proof of Theorem 2 it follows that its conclusion holds as long as
E|g|% < oco. This is true when @ = 4p — 4 > —1, or p > 3/4. We believe that
this restriction is unnecessary, i.e. the statement of Theorem 2 holds fgp ang.
A proof of this would involve proving Theorem 2 without passing to the second moment.
Preliminary calculations show that it may be possible to avoid the second moment, bu
the calculations quickly become tedious and beyond the scope of the present paper. V
have therefore chosen to focus on the convex rangel (i.e. the setting of the Central
Limit Problem).
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