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TRUNCATED MICROSUPPORT AND
HOLOMORPHIC SOLUTIONS OFD-MODULES

BY MASAKI KASHIWARA, TERESA MONTEIRO FERNANDES1 AND

PIERRE SCHAPIRA

ABSTRACT. – We study the truncated microsupportSSk of sheaves on a real manifold. Applyin
our results to the case ofF = RHomD(M ,O), the complex of holomorphic solutions of a coher
D-moduleM , we show thatSSk(F ) is completely determined by the characteristic variety ofM . As
an application, we obtain an extension theorem for the sections ofHj(F ), j < d, defined on an ope
subset whose boundary is non-characteristic outside of a complex analytic subvariety of codimend.
We also give a characterization of the perversity forC-constructible sheaves in terms of their trunca
microsupports.

 2003 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous étudions le micro-support tronquéSSk des faisceaux sur une variété réelle. Appliqu
nos résultats au cas du complexeF = RHomD(M ,O) des solutions holomorphes d’unD-module
cohérentM , nous montrons queSSk(F ) est complètement determiné par la variété caractéristique deM .

Comme application, nous obtenons un théorème d’extension pour les sections deHj(F ), j < d, definies
sur un ouvert dont la frontière est non caractéristique en dehors d’un ensemble analytique com
codimensiond. Nous donnons aussi une caractérisation de la perversité des faisceauxC-constructibles en
terme de leurs micro-supports tronqués.

 2003 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The notion of microsupport of sheaves was introduced in the course of the study of the
of linear partial differential equations (LPDE), and it is now applied in various domain
mathematics. References are made to [8].

For an objectF of the derived category of abelian sheaves on a real manifoldX , its
microsupportSS(F ) is a closed conic subset of the cotangent bundleπ :T ∗X → X which
describes the direction of “non-propagation” ofF . In particular, for a smooth closed submanifo
Y of X , the supportSupp(µY (F )) of the Sato microlocalizationµY (F ) of F along Y is
contained inSS(F )∩ T ∗YX , whereT ∗YX denotes the conormal bundle toY in X .

If X is a complex manifold andM is a system of LPDE, that is, a coherent module o
the sheafDX of holomorphic differential operators, the complexF of holomorphic solutions o
this system is given byRHomDX (M ,OX), and the microsupport ofF is then the characterist
varietyCh(M ) of M .

1 The research of author was supported by FCT and Programa Ciência, Tecnologia e Inovação do Quadro Co
de Apoio.
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However some phenomena of propagation may happen in specific degrees, related to the
principle of unique continuation for holomorphic functions, and this leads to a variant of the
notion of microsupport, that of “truncated microsupport”, a notion introduced by the authors
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of [8] but never published.
Following a suggestion of these authors, Tonin [12] was able to regain in the langu

the truncated microsupport a result of Ebenfelt, Khavinson and Shapiro [2,3]. In their p
these authors obtained the extension of holomorphic solutions of a differential operato
the solutions are defined on an open subset with smooth boundary non-characteristic o
smooth complex hypersurface. Note that the problem of extending holomorphic solutions
non-characteristic real hypersurfaces plays a crucial role in the theory of LPDE, and was in
by Leray [9], followed by [13,1,5] (see also [4] and [10] for an exposition of these results).

The truncated microsupport is defined as follows. Letk be a field, letX be a real manifold
and letF ∈ Db(kX) be an object of the derived category of sheaves ofk-vector spaces onX .
For an integerk ∈ Z, a pointp ∈ T ∗X does not belong to the truncated microsupportSSk(F ) if
and only ifF is microlocally atp isomorphic to an object ofD>k(kX). Hence{SSk(F )}k∈Z

is an increasing sequence, whileSSk(F ) is an empty set fork� 0 andSSk(F ) coincides with
SS(F ) for k� 0.

In this paper, we give equivalent definitions of the truncated microsupport and we
its behavior under exterior tensor product, smooth inverse image and proper direct
We introduce then the closed subsetSSYk (F ) of π−1(Y ) which describes the support of th
microlocalization ofF along submanifolds ofY and prove (see Theorem 5.3):

SSk(F ) = SSk(F ) \ π−1(Y )∪ SSYk (F ).

We then apply this result to the complexF = RHomDX (M ,OX) of holomorphic solutions
of a coherentDX -moduleM on a complex manifoldX .

LetS be a closed complex analytic subset of codimension greater than or equal tod and letS′

be a closed complex analytic subset ofS of codimension greater thand such thatS0 := S \S′ is
a smooth submanifold of codimensiond. We first prove the estimate below (see Proposition 6

SSd−1(F ) = SSd−1(F ) \ π−1(S),

SSd(F ) = SSd(F ) \ π−1(S)∪ SSd(F )∩ T ∗S0
X.

In particular, if j :Ω ↪→ X is the embedding of a pseudo-convex open subset with sm
boundary∂Ω, and if∂Ω is transversal toS (i.e.T ∗∂ΩX ∩ T ∗S0

X ⊂ T ∗XX) and non-characterist
for M outside ofS, one has

ExtjDX

(
M ,O+

X/OX

)
= 0 for anyj < d,

whereO+
X/OX = j∗j−1OX/OX .

Next we calculateSSk(F ) in terms of the characteristic variety ofM (see Theorem 6.7
LettingCh(M ) =

⋃
α∈A Vα be the decomposition ofCh(M ) into irreducible components, on

has

SSk(F ) =
( ⋃

codimπ(Vα)<k

Vα

)
∪

( ⋃
codimπ(Vα)=k

T ∗π(Vα)X

)
.(1.1)

4e SÉRIE– TOME 36 – 2003 –N◦ 4
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In particular, ifF is a perverse sheaf (i.e.,M is holonomic), then lettingSS(F ) =
⋃
α∈AΛα be

the decomposition into irreducible components, one has

⋃

.

f
s

f

SSk(F ) =
codimπ(Λα)�k

Λα.

Conversely ifF ∈Db(CX) is C-constructible and if it satisfies

SSk(F ) ∪ SSk
(
RHom (F,CX)

)
⊂

⋃
codimπ(Λα)�k

Λα for everyk,

thenF is a perverse sheaf.

2. Notations and review

We will mainly follow the notations in [8].
Let X be a real analytic manifold. We denote byτ :TX → X the tangent bundle toX and

by π :T ∗X → X the cotangent bundle. We identifyX with the zero section ofT ∗X and set
Ṫ ∗X = T ∗X \ X . We denote byπ̇ : Ṫ ∗X → X the restriction ofπ to Ṫ ∗X . For a smooth
submanifoldY of X , TYX denotes the normal bundle toY andT ∗YX the conormal bundle
In particular,T ∗XX is identified withX .

For a submanifoldY of X and a subsetS of X , we denote byCY (S) the normal cone toS
alongY , a closed conic subset ofTYX .

For a morphismf :X→ Y of real manifolds, we denote by

fπ :X ×Y T
∗Y → T ∗Y and fd :X ×Y T

∗Y → T ∗X

the associated morphisms.
For a subsetA of T ∗X , we denote byAa the image ofA by the antipodal map

a : (x; ξ) �→ (x;−ξ).

The closure ofA is denoted byA. For a coneγ ⊂ TX , the polar coneγ◦ to γ is the convex cone
in T ∗X defined by

γ◦ =
{
(x; ξ) ∈ T ∗X ; x∈ π(γ) and〈v, ξ〉 � 0 for any(x;v) ∈ γ

}
.

Let k be a field. We denote byD(kX) the derived category of complexes of sheaves ok-
vector spaces onX , and byDb(kX) the full subcategory ofD(kX) consisting of complexe
with bounded cohomologies.

Fork ∈ Z, we denote as usual byD�k(kX) (resp.D�k(kX)) the full additive subcategory o
Db(kX) consisting of objectsF satisfyingHj(F ) = 0 for anyj < k (resp.Hj(F ) = 0 for any
j > k). The categoryD�k+1(kX) is sometimes denoted byD>k(kX).

We denote byτ�k :D(kX) → D�k(kX) the truncation functor. Recall that forF ∈
D(kX) the morphismτ�kF → F induces isomorphismsHj(τ�kF ) ∼→Hj(F ) for j � k and
Hj(τ�kF ) = 0 for j > k.

If F is an object ofDb(kX), SS(F ) denotes its microsupport, a closedR+-conic involutive
subset ofT ∗X . For p ∈ T ∗X , Db(kX ;p) denotes the localization ofDb(kX) by the full
triangulated subcategory consisting of objectsF such thatp /∈ SS(F ).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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If Y is a submanifold,µY (F ) denotes the Sato microlocalization ofF alongY . Recall that
µY (F ) ∈Db(kT∗

Y
X) and

t

x

Hj
(
µY (F )

)
p
� lim
−→
Z

Hj
Z(F )π(p) for p ∈ T ∗YX andj ∈ Z,(2.1)

whereZ runs through the family of closed subsets ofX such that

CY (Z)π(p) \ {0} ⊂
{
v ∈ (TYX)π(p); 〈v, p〉> 0

}
.(2.2)

On a complex manifoldX , we consider the sheafOX of holomorphic functions and the sheafDX

of linear holomorphic differential operators of finite order. Concerning the theory ofD -modules,
references are made to [6].

3. Truncated microsupport

We shall give here several equivalent definitions of the truncated microsupport.
For a closed coneγ ⊂ Rn, one sets

Zγ :=
{
(x;y) ∈ Rn ×Rn; x− y ∈ γ

}
.

Let q1, q2 :Rn ×Rn → Rn be the first and the second projections.
One defines the integral transform with kernelkZγ ,

kZγ◦ :Db(kRn)→Db(kRn), kZγ ◦G=Rq1!

(
kZγ ⊗ q−1

2 G
)
.

If G has compact support, one has the following formula for the stalk ofkZγ ◦G atx ∈ Rn:

(kZγ ◦G)x �RΓ
(
Rn; kx+γa ⊗G

)
.

Recall that a closed convex coneγ is calledproper if 0 ∈ γ andInt(γ◦) �= ∅.
For (x0; ξ0) ∈ Rn × (Rn)∗ andε ∈ R we set:

Hε(x0, ξ0) =
{
x∈ Rn; 〈x− x0, ξ0〉>−ε

}
.

If there is no risk of confusion, we writeHε instead ofHε(x0, ξ0) for short. The following resul
is proved in [8].

LEMMA 3.1. – LetX be an open subset ofRn and letG ∈Db(kX). Letp= (x0; ξ0) ∈ T ∗X .
Thenp /∈ SS(G) if and only if there exist an open neighborhoodW of x0, a proper closed conve
coneγ andε > 0 such thatξ0 ∈ Int(γ◦), (W + γa)∩Hε ⊂X and

Hj(X ;k(x+γa)∩Hε
⊗G) = 0 for anyj ∈ Z andx∈W.

We shall give a similar version of the above lemma for the truncated microsupport.

PROPOSITION 3.2. – LetX be a real analytic manifold and letp ∈ T ∗X . LetF ∈Db(kX)
andk ∈ Z, α ∈ Z�1 ∪ {∞, ω}. Then the following conditions are equivalent:

(i)k There existF ′ ∈D>k(kX) and an isomorphismF � F ′ in Db(kX ;p).

4e SÉRIE– TOME 36 – 2003 –N◦ 4
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(ii) k There existF ′ ∈ D>k(kX) and a morphismF ′ → F in Db(kX) which is an
isomorphism inDb(kX ;p).

(iii) k,α There exists an open conic neighborhoodU of p such that for anyx ∈ π(U) and for

en
any R-valuedCα-functionϕ defined on a neighborhood ofx such thatϕ(x) = 0,
dϕ(x) ∈ U , one has

Hj
{ϕ�0}(F )x = 0 for anyj � k.(3.1)

WhenX is an open subset ofRn andp= (x0; ξ0), the above conditions are also equivalent to
(iv)k There exist a proper closed convex coneγ ⊂ Rn, ε > 0 and an open neighborhoodW

of x0 with ξ0 ∈ Int(γ◦) such that(W + γa)∩Hε ⊂X and

Hj(X ;k(x+γa)∩Hε
⊗F ) = 0 for anyj � k andx∈W.(3.2)

Proof. –We may assumeX = Rn.
(ii) k ⇒ (i)k is obvious.
(i)k ⇒ (iv)k By the hypothesis, there exist distinguished triangles

G→ F →K
+1−→ and G→ F ′→K ′

+1−→

in Db(kX) such thatp /∈ SS(K) and p /∈ SS(K ′). By Lemma 3.1, there exist an op
neighborhoodW of x0, a proper closed convex coneγ such thatξ0 ∈ Int(γ◦), andε > 0 such
that

Hj(X ;k(x+γa)∩Hε
⊗K) =Hj(X ;k(x+γa)∩Hε

⊗K ′) = 0

for anyj ∈ Z andx∈W . Hence one has

Hj(X ;k(x+γa)∩Hε
⊗ F )�Hj(X ;k(x+γa)∩Hε

⊗ F ′).

Sincek(x+γa)∩Hε
⊗ F ′ belongs toD>k(kX), we get (3.2).

(i)k ⇒ (iii) k,1 Same proof as (i)k ⇒ (iv)k, replacing Hj(X ;k(x+γa)∩Hε
⊗ G) with

Hj
{ϕ�0}(G)x whereG= F ′, F ,K ,K ′.

(iii) k,1 ⇒ (iii) k,ω is obvious.
(iv)k ⇒ (ii) k To start with, note that (3.2) entails

(kZγ ◦FHε)W ∈D>k(kX).(3.3)

Let ∆ denote the diagonal ofX ×X . Then the morphismkZγ → k∆ induces the morphism
in Db(kX)

kZγ ◦ FHε → FHε ,(3.4)

which is an isomorphism inDb(kX ;p) by [8, Theorem 7.1.2]. Therefore, the composition

(kZγ ◦FHε )W → (FHε)W → F

is an isomorphism inDb(kX ;p) and(kZγ ◦FHε)W belongs toD>k(kX ;p).
(iii) k,ω ⇒ (iv)k We already know that (iv)k is equivalent to (i)k for everyk. Hence arguing

by induction onk, we may assume that (i)k−1 holds. Therefore we may assumeF ∈D�k(kX).
Then we have

Hj(X ;k(x+γa)∩Hε
⊗ F ) = 0 for anyj � k− 1

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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and

Hk(X ;k(x+γa)∩Hε
⊗ F )�H0

(
X ;k(x+γa)∩Hε

⊗Hk(F )
)
,

g
s

me

e

e

er
Hk
{ϕ�0}(F )� Γ{ϕ�0}

(
Hk(F )

)
.

We may assume thatInt(γ) �= ∅, W × (γ◦ \ {0}) ⊂ U and (W + γa) ∩ Hε ⊂ W . Let
s ∈ Γ(X ;k(x+γa)∩Hε

⊗Hk(F )). Then there existsy ∈ Rn such that

x+ γa ⊂ y+ Int(γa)⊂W ∪ (X \Hε)

ands extends to a section

s̃ ∈ Γ
(
y+ Int(γa);kHε ⊗Hk(F )

)
⊂ Γ

(
y+ Int(γa);Hk(F )

)
.

SetS = supp(s̃) ⊂ Hε ∩ (y + Int(γa)). Then the following lemma assertsS = ∅, and hence
Hk(X ;k(x+γa)∩Hε

⊗F ) = 0. ✷
LEMMA 3.3. – Let γ be a proper closed convex cone inRn. LetΩ be an open subset ofRn

such thatΩ+ γa =Ω, and letS be a closed subset ofΩ such thatS � Rn. Assume the followin
condition: for anyx ∈ Rn and any real analytic functionϕ defined onRn, the three condition
S ∩ ϕ−1(R<0) = ∅, ϕ(x) = 0 anddϕ(x) ∈ Int(γ◦) implyx /∈ S.

ThenS is an empty set.

Proof. –If γ = {0}, then by takingϕ= 0, the lemma is trivially true. Hence we may assu
that{0} � γ. Let us takeξ such thatγ \ {0} ⊂ {x; 〈x, ξ〉 > 0}. Then there is a real numbera
such thatS ⊂ {x; 〈x, ξ〉> a}. SetH− = {x; 〈x, ξ〉< a}. By replacingΩ with Ω∪H−, we may
assume from the beginningH− ⊂Ω.

For a proper closed convex coneγ′ such thatγ \{0}⊂ Int(γ′) andγ′ \{0}⊂ {x; 〈x, ξ〉> 0},
setΩγ′ = {x ∈ Ω; x + γ′a ∈ Ω}. SinceH− ⊂ Ω, Ωγ′ is an open subset andΩ =

⋃
γ′ Ωγ′ .

Set Sγ′ = S ∩ Ωγ′ . SinceS =
⋃
γ′ Sγ′ , it is enough to show the assertion forSγ′ . Since

γ′◦ \ {0} ⊂ Int(γ◦), by replacingΩ, S, γ with Ωγ′ , Sγ′ and γ′, we may assume from th
beginning

Int(γ) �= ∅,(3.5)

S ∩ϕ−1(R<0) = ∅, ϕ(x) = 0 and dϕ(x) ∈ γ◦ \ {0} ⇒ x /∈ S.(3.6)

Let us setψ(x) = dist(x, γa) := inf{‖y−x‖; y ∈ γa}. It is well known thatψ is a continuous
function onRn, andC1 on Rn \ γa. More precisely for anyx ∈ Rn \ γa, there exists a uniqu
y ∈ γa such thatψ(x) = ‖x−y‖. Moreoverdψ(x) = ‖x−y‖−1(x−y) ∈ γ◦ \{0}. Furthermore
Bψ(x)(y) := {z ∈ Rn; ‖z − y‖<ψ(x)} is contained in{z ∈ Rn; ψ(z)<ψ(x)}.

For ε > 0, we setγaε = {x ∈ Rn; ψ(x) < ε}. Then γaε is an open convex set. Moreov
γaε + γa = γaε . SetΩε = {x;x+ γaε ⊂Ω}. ThenΩ=

⋃
ε>0 Ωε. SetSε = S ∩Ωε. It is enough to

show thatSε = ∅.
AssumingSε �= ∅, we shall derive a contradiction. Let us takex0 ∈ Sε andv ∈ Int(γ). Set

Vt = x0 + γaε/2 + tv for t ∈ R. Then one has

Vt =
⋃
t′<t

Vt′ and Vt =
⋂
t′>t

Vt′ =
⋂
t′>t

Vt′ ,(3.7)

x0 ∈ Vt ∩ S for t� 0, and Vt ⊂H− for t� 0,(3.8)

Vt ⊂Ω for anyt� 0.(3.9)

4e SÉRIE– TOME 36 – 2003 –N◦ 4
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Hence, for any compact setK and t ∈ R suchK ∩ Vt = ∅, there existst′ > t such that
K ∩ Vt′ = ∅.

Let us set

e
a

ry

se of

at

m

e

c= sup{t;Vt ∩ S = ∅}.

Thenc� 0 andVc ∩ S = ∅. By (3.9), one hasVc ∩ S ⊂ Vc ∩ S. SinceS is a compact set, ther
existsx1 ∈ S ∩ ∂Vc. Here∂Vc := Vc \ Vc is the boundary ofVc. As seen before, there exists
ballBε/2(y) := {x;‖x− y‖< ε/2} such thatBε/2(y)⊂ Vc, ‖x1 − y‖= ε/2 andx1 − y ∈ γ◦.
This is a contradiction by takingϕ(x) = ‖x− y‖2 − (ε/2)2. ✷

DEFINITION 3.4. – (i) LetF ∈Db(kX). The closed conic subsetSSk(F ) of T ∗X is defined
by: p /∈ SSk(F ) if and only if F satisfies the equivalent conditions in Proposition 3.2.

(ii) Let p ∈ T ∗X and k ∈ Z. Then D>k(kX ;p) denotes the full additive subcatego
of Db(kX ;p) consisting ofF satisfyingp /∈ SSk(F ). We write sometimesD�k(kX ;p) for
D>k−1(kX ;p).

Note thatSSk(F ) ∩ T ∗XX = π(SSk(F )) = Supp(τ�kF ).

Remark3.5. – The truncated microsupport has the following properties, similarly to tho
the microsupport.

(i) For anyF ∈Db(kX), one hasSSk(F [n]) = SSk+n(F ).
(ii) If F ′→ F → F ′′

+1−→ is a distinguished triangle, then one has

SSk(F )⊂ SSk(F ′)∪ SSk(F ′′),(
SSk(F ′) \ SSk−1(F ′′)

)
∪

(
SSk(F ′′) \ SSk+1(F ′)

)
⊂ SSk(F ).

(3.10)

(iii) For anyF ∈Db(kX), one has

SSk(F ) = SSk(τ�kF ).(3.11)

Indeed, one has a distinguished triangleτ�kF → F → τ>kF
+1−→. Then (ii) implies

SSk(F )⊂ SSk(τ�kF )∪ SSk(τ>kF ) and

SSk(τ�kF ) \ SSk−1(τ>kF )⊂ SSk(F ).

Hence the assertion follows fromSSk−1(τ>kF ) = SSk(τ>kF ) = ∅.

Remark3.6. – (i) If F ∈D>k(kX), thenSSk(F ) = ∅.
(ii) If F ∈D�k(kX), thenSSk+dX (F ) = SS(F ). HeredX is the dimension ofX .
The last statement follows from the characterization (iv)k in Proposition 3.2 and the fact th

Hj(X ;F ) vanishes for anyF ∈D�k(kX) andj > k+ dX .

Remark3.7. – It is not true thatF ∈ D�k(kX ;p) implies the existence of a morphis
F → F ′ in Db(kX) which is an isomorphism inDb(kX ;p) andF ′ ∈D�k(kX). For example
takeX = R, p = (0; 1), Z = {x ∈ X ; x < 0}, F1 = k{0} andF = kZ [1]. Then there is a
morphismF1 → F which is an isomorphism inD(kX ;p). Hence one hasF ∈ D�0(kX ;p).
Assume that there is a morphismu :F → F ′ in Db(kX) which is an isomorphism inDb(kX ;p)
andF ′ ∈D�0(kX). SinceH0(F ) = 0, the morphismH0(F1) →H0(F ′) vanishes, and henc
the compositionF1 → F

u−→ F ′ vanishes. This is a contradiction.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



590 M. KASHIWARA, T. MONTEIRO FERNANDES AND P. SCHAPIRA

Example3.8. – (i) One has

{∅ for k < 0,

f

l
proved

sing
n 4.1
SSk(kX) =
T ∗XX for k � 0.

(ii) Let X = R andZ1 = {x∈X ; x� 0}, Z2 = {x∈X ; x> 0}. Then one has

SSk(kZ1 ) =
{∅ for k < 0,

{(x; ξ); ξ = 0, x� 0} ∪ {(x; ξ); x= 0, ξ � 0} for k � 0,

SSk(kZ2 ) =




∅ for k < 0,

{(x; ξ); ξ = 0, x� 0} for k = 0,

{(x; ξ); ξ = 0, x� 0} ∪ {(x; ξ); x= 0, ξ � 0} for k � 1.

(iii) Let X be a complex manifold. Then

SSk(OX) =




∅ for k < 0,

T ∗XX for k = 0,

T ∗X for k � 1.

(iv) LetM be a real analytic manifold,X a complexification ofM , M a coherentDX -module,
and letBM denote the sheaf of Sato’s hyperfunctions onM . RegardingT ∗M as a subset o
T ∗X , one has

SS0

(
RHomDX (M ,BM )

)
⊂Ch(M )∩ T ∗M.

This follows immediately from the Holmgren theorem.

4. Functorial properties

In this section, we study in Propositions 4.1–4.4 below, the behavior ofSSk under externa
tensor products, proper direct image and smooth inverse image. These properties are
similarly to the corresponding properties of the microsupport (cf. Chapter V of [8]), u
Proposition 3.2. However the property of the microsupport corresponding to Propositio
was only known in a weaker form.

PROPOSITION 4.1. – Let X and Y be real analytic manifolds. Then forF ∈ Db(kX),
G ∈Db(kY ) andk ∈ Z, one has

SSk(F �G) =
⋃

i+j=k

SSi(F )× SSj(G).(4.1)

Proof. –Let us first show that(p, p′) /∈
⋃
i+j=k SSi(F )× SSj(G) implies

(p, p′) /∈ SSk(F �G).

SinceSSk(F �G)⊂ SS(F �G)⊂ SS(F )× SS(G), we may assume that

(p, p′) ∈ SS(F )× SS(G).
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SinceSSi(F ) = SS(F ) for i� 0 andSSi(F ) = ∅ for i� 0, there existsi such thatp ∈ SSi(F )
andp /∈ SSi−1(F ). Setj = k − i. Thenp′ /∈ SSj(G). Hence there exist a morphismF ′ → F
which is an isomorphism inDb(kX ;p) with F ′ ∈ D>i−1(kX), andG′ → G which is an

s

let
isomorphism inDb(kY ;p′) with G′ ∈D>j(kX). HenceF ′ �G′→ F �G is an isomorphism
in Db(kX×Y ; (p, p′)) andF ′ �G′ ∈D>i+j(kX×Y ).

Next let us showSSi(F )× SSj(G)⊂ SSi+j(F �G). If i� 0 or j� 0, then the assertion i
trivial. By the induction oni andj, we may assume thatSSi−1(F )×SSj(G)⊂ SSi+j−1(F �G)
andSSi(F )× SSj−1(G)⊂ SSi+j−1(F �G).

Let (p, p′) ∈ SSi(F )×SSj(G). We shall prove(p, p′) ∈ SSi+j(F �G). If p ∈ SSi−1(F ), then
the assertion is trivial. Hence we may assumep /∈ SSi−1(F ). Thus, by replacingF with a sheaf
microlocally isomorphic atp, we may assumeF ∈D�i(kX) from the beginning. Similarly we
may assumeG ∈ D�j(kY ). For any open neighborhoodU of p, we can findx1 ∈ X and a
C1-functionϕ such that(x1;dϕ(x1)) ∈U and

Hi
{ϕ�0}(F )x1 =Γ{ϕ�0}(Hi(F ))x1 �= 0.

Similarly, for any open neighborhoodU ′ of p′, we can findy1 ∈ Y and aC1-functionψ such
that (y1;dψ(y1)) ∈ U ′ andHj

{ψ�0}(G)y1 = Γ{ψ�0}(Hj(G))y1 �= 0. Setz = (x1, y1) ∈X × Y
andη(x, y) = ϕ(x) + ψ(y). Then(z;dη(z)) ∈U ×U ′ and

Hi+j
{η�0}(F �G)z =Γ{η�0}

(
Hi(F )�Hj(G)

)
z
,

as a subspace ofHi(F )x1 ⊗ Hj(G)y1 , contains(Γ{ϕ�0}(Hi(F ))x1) ⊗ (Γ{ψ�0}(Hj(G))y1 ).
HenceHi+j

{η�0}(F � G)z �= 0. SinceU × U ′ forms a neighborhood system of(p, p′), we can
conclude(p, p′) ∈ SSi+j(F �G). ✷

COROLLARY 4.2. –Let X and Y be real analytic manifolds. Then forF ∈ Db(kX) and
G ∈Db(kY ), one has

SS(F �G) = SS(F )× SS(G).(4.2)

PROPOSITION 4.3. – Let f :X → Y be a morphism of real analytic manifolds and
F ∈Db(kX) such thatf is proper on the support ofF . Then for anyk ∈ Z,

SSk
(
Rf∗(F )

)
⊂ fπfd−1

(
SSk(F )

)
.(4.3)

The equality holds in case f is a closed embedding.

Proof. –We shall follow the method of proof of Proposition 5.4.4 of [8].
Let y ∈ Y and letϕ be a realC1-function onY such thatϕ(y) = 0 andd(ϕ ◦ f)(x) /∈ SSk(F )

for everyx ∈ f−1(y). Therefore

HjRΓ{ϕ◦f�0}(F )|f−1(y) = 0 for anyj � k.

We have

HjRΓ{ϕ�0}
(
Rf∗(F )

)
y
�HjRf∗

(
RΓ{ϕ◦f�0}(F )

)
y

�Hj
(
f−1(y);RΓ{ϕ◦f�0}(F )

)
= 0

for everyj � k. This proves (4.3).
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Let us now assume thatf is a closed embedding. Letp /∈ SSk(Rf∗F ). We may assume that
Y is a real vector space andX is a linear subspace ofY . Let γ ⊂ Y ,W ⊂ Y , ε be chosen as in
Proposition 3.2(iv)k with respect top andRf∗F , that is,

or

t

et us
Hj(Y ;k(x+γa)∩Hε
⊗ Rf∗F ) = 0 for anyj � k andx ∈W.

Sincef is a closed embedding, one has

Hj(Y ;k(x+γa)∩Hε
⊗ Rf∗F )�Hj(X ;k(x+γa)∩Hε∩X ⊗ F ).

Hence one has

Hj(X ;k(x+γa∩X)∩(Hε∩X) ⊗ F ) = 0 for anyj � k,
and the interior of the polar set ofγ ∩X containsfdf−1

π (p), and therefore

SSk(F ) ∩ fdf−1
π (p) = ∅. ✷

PROPOSITION 4.4. – LetX andY be real analytic manifolds and letf :X→ Y be a smooth
morphism. LetG ∈Db(kY ). Then, for anyk ∈ Z,

SSk
(
f−1G

)
= fdf−1

π

(
SSk(G)

)
.(4.4)

Proof. –The problem being local onX , we may assume thatX = Y ×Z , Y andZ are vector
spaces andf is the projection. Then we have to show

SSk(G� kZ) = SSk(G)× T ∗ZZ.(4.5)

This follows from Proposition 4.1. ✷
5. Estimates for the truncated microsupport

Let Y be a smooth submanifold ofX . In this section we will give an estimate f
SSk(F ) ∩ π−1(Y ). Recall thatµY (F ) denotes the microlocalization ofF alongY . Note that
for F ∈D�k(kX),Hk(µY (F ))�H0(µY (Hk(F ))) is a subsheaf ofπ−1Hk(F )|T∗

Y
X and

Hk
(
µY (F )

)
p
�

{
s ∈Hk(F )π(p); CY

(
supp(s)

)
π(p)

\ {0}

⊂
{
v ∈ (TYX)π(p); 〈v, p〉> 0

}}
(5.1)

for p ∈ T ∗YX .
The following result is a generalization of [7, Theorem 5.7.1] toSSk.

THEOREM 5.1. – Let X be a real analytic manifold andY a smooth submanifold. Le
F ∈Db(kX). Then

SSk(F ) ∩ T ∗YX =
(
T ∗YX ∩ SSk(F ) \ π−1(Y )

)
∪ Supp

(
τ�kµY (F )

)
.(5.2)

Proof. –It is evident that the right hand side of (5.2) is contained in the left hand side. L
show the converse inclusion. Assuming thatp ∈ T ∗YX satisfies

p /∈ SSk(F ) \ π−1(Y ) ∪ Supp
(
τ�k(µY (F )

))
,
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we shall provep /∈ SSk(F ). Arguing by induction onk, one hasp /∈ SSk−1(F ) and by
Proposition 3.2(ii)k−1 we may assume thatF ∈D�k(kX).

There exists an open conic neighborhoodU of p in T ∗X such thatU ∩ SSk(F ) ⊂ π−1(Y )

x

e
n

n

n

t

verse
andHj(µY (F ))|U = 0 for anyj � k. Furthermore, we may assume thatX = Rn, Y is a linear
subspace ofX , p= (x0; ξ0). Let us take an open neighborhoodW of x0, a proper closed conve
coneγ andε > 0 such thatW × Int(γ◦) ⊂ U , ξ0 ∈ Int(γ◦) and(W + γa) ∩Hε ⊂W . Hence
one has

Hj(X ;k(x+γa)∩Hε
⊗ F )�Hj−k(X ;k(x+γa)∩Hε

⊗Hk(F )
)

for anyj � k.

Thus it is enough to check that

Γ
(
X ;k(x+γa)∩Hε

⊗Hk(F )
)
= 0.(5.3)

Lets ∈ Γ(X ;k(x+γa)∩Hε
⊗Hk(F )). Then there exists an open setΩ0 such thatΩ0+γa =Ω0,

x+ γa ⊂ Ω0 ands extends to a sectioñs ∈ Γ(Ω0;kHε ⊗Hk(F )). Moreover we may assum
that (Ω0 ∩ Hε) × γ◦ ⊂ U . Set S = supp(s̃). Then S \ (Y + γ) satisfies the condition i
Lemma 3.3 withΩ = Ω0 \ (Y + γ). Hence we haveS \ (Y + γ) = ∅ and henceS ⊂ Y + γ.
SinceHk(µY (F ))|U = 0 and

CY (Y + γ)⊂ Y × (Y + γ)⊂
{
v ∈ TYX ; 〈v, ξ0〉> 0

}
∪

(
Y × {0}

)
,

the formula (5.1) implies̃s|Y = 0. One has thereforeS ∩ Y = ∅. ThenS satisfies the conditio
in Lemma 3.3, and we can concludeS = ∅, which impliess= 0. ✷

We shall need the following definition:

DEFINITION 5.2. – LetY be a closed submanifold ofX , letk ∈ Z and letF ∈Db(kX). The
closed subsetSSYk (F ) of π−1(Y ) is defined by:p /∈ SSYk (F ) if and only if there exists an ope
conic neighborhoodU of p in π−1(Y ) satisfying the following two conditions:

(i) τ�kµY (F )|U∩T∗
Y
X = 0,

(ii) for any smooth real analytic hypersurfaceZ of Y ,

τ�kµZ(F )|U∩T∗
Z
X\T∗

Y
X = 0.

We remark thatSSYk (F ) is a conic closed set obviously contained inSSk(F )∩ π−1(Y ).

THEOREM 5.3. – Let X be a real analytic manifold andY a closed submanifold. Le
F ∈Db(kX). Then

SSk(F ) = SSk(F ) \ π−1(Y )∪ SSYk (F ).(5.4)

Proof. –The left hand side obviously contains the right hand side. Let us prove the con
inclusion. Assuming thatp ∈ π−1(Y ) satisfiesp /∈ SSk(F ) \ π−1(Y ) ∪ SSYk (F ), let us show
p /∈ SSk(F ).

If p ∈ T ∗YX , Theorem 5.1 implies the assertion. Hence we may assumep /∈ T ∗YX . LetU be an
open conic neighborhood ofp in T ∗X such thatSSk(F )∩U ⊂ π−1(Y ) andU ∩ SSYk (F ) = ∅.

We may assume thatX = {x= (u, v, t); u ∈ Rn, v ∈ Rm, t ∈ R},Y = {(u, v, t) ∈X ; u= 0}
andp= ((0,0,0); (0,0,1)). We may assumeW × γ◦ ⊂ U with γ = {t�

√
‖u‖2 + ‖v‖2 } and

an open neighborhoodW of the origin. SetHε = {(u, v, t); t > −ε}, and chooseW and a
sufficiently smallε such that(x+ γa)∩Hε ⊂W for anyx ∈W .
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By the induction onk, we may assumeF ∈D�k(kX). It is enough to show for anyx0 ∈W

Γ
(
x0 + Int(γa);kHε ⊗Hk(F )

)
= 0.

.

of the

[7,

ment.

of

d

Let s ∈ Γ(x0 + Int(γa);kHε ⊗Hk(F )). SetS = supp(s) ⊂ (x0 + Int(γa)) ∩Hε. Assuming
S �= ∅, we shall derive a contradiction. Setx0 = (u0, v0, t0) and set

ϕ(x) = ‖u− u0‖2 + ‖v− v0‖2 − (t− t0)2.

Then Ω := x0 + Int(γa) = {x; t < t0, ϕ(x) < 0}, andϕ(Ω ∩ Hε) is bounded from below
Moreover one hasdϕ(x) ∈ Int(γ◦) for anyx ∈ Ω, anddϕ(x) /∈ T ∗YX for anyx ∈ Ω ∩ Y . Set
c= inf{ϕ(x); x ∈ S}< 0. Sinceϕ|S :S→ R<0 is a proper map, one hasc ∈ ϕ(S). LetZc be
the closed subset{x= (0, v, t) ∈ Y ; t < t0, ϕ(x) = c} of Y and setΩ′ = Ω \ (Zc + γ). Since
one has

Zc + γ =
{
(t, u, v); t− t0 � ‖u‖−

√
‖v− v0‖2 + ‖u0‖2 − c

}
,

ϕ takes values smaller thanc on Y \ (Zc + γ), and henceS′ := S ∩ Ω′ does not intersectY .
ThereforeS′ satisfies the condition in Lemma 3.3. HenceS′ = ∅, which meansS ⊂ Zc + γ.
SinceCZc(Zc + γ)x \ {0} ⊂ {dϕ(x)> 0} for anyx ∈ Zc,H0(µZcH

k(F ))|U\T∗
Y
X = 0 implies

s|Zc = 0. ThereforeS ∩ Zc = ∅. Since{x ∈ (Zc + γ) ∩ Ω;ϕ(x) = c} ⊂ Zc, one hasc /∈ ϕ(S),
which is a contradiction. ✷

6. Applications to D -modules

In this section,X denotes a complex manifold.
Before stating our main result, let us recall a classical lemma on the vanishing

microlocalization ofOX along submanifolds.

LEMMA 6.1. – Let Y be a closed complex submanifold of codimensiond ofX and letS be
a smooth real analytic hypersurface ofY . Then

Hk
(
µY (OX)

)
= 0 for anyk �= d,(6.1)

Hk
(
µS(OX)

)∣∣
T∗

S
X\T∗

Y
X

= 0 for anyk � d.(6.2)

Proof. –The vanishing property (6.1) is proved in [11] and (by a different method) in
Proposition 11.3.4].

The vanishing property (6.2) follows from [7, Proposition 11.3.1]. Let us recall this state
Let p ∈ T ∗SX . Set Ep = Tp(T ∗X), λS = Tp(T ∗SX), λ0 = Tp(π−1π(p)), and denote byν
the complex line inEp, the tangent space to the Euler vector field inT ∗X at p. Let c be
the real codimension of the real submanifoldS and letδ denote the complex dimension
λS ∩

√
−1λS ∩ λ0.

The result of loc. cit. asserts that if the real dimension ofλS ∩ ν is 1, then

Hj
(
µS(OX)

)
p
= 0 for j < c− δ.

(The result in loc. cit. is more precise, involving the signature of the Levi form.) Ifp ∈
T ∗SX \ T ∗YX , the real dimension ofλS ∩ ν is 1. Sincec= 2d+ 1 andδ = d, we get the desire
result. ✷

Now we are ready to prove the following proposition.
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PROPOSITION 6.2. – LetX be a complex manifold, letM be a coherentDX -module and let
S be a closed complex analytic subset ofX with codimX S � d. SetF =RHomDX (M ,OX).
Then

.

of
(i) SSd−1(F ) = SSd−1(F ) \ π−1(S).
(ii) LetS′ be a closed complex analytic subset ofS such thatcodimX S

′ > d andS0 := S \S′
is a non-singular subvariety of codimensiond. Then

SSd(F ) = SSd(F ) \ π−1(S) ∪ Supp(τ�dµS0(F |X\S′)).

In particular one has

SSd(F ) = SSd(F ) \ π−1(S) ∪ SSd(F ) ∩ T ∗S0
X.

Proof. –(i) By the induction on the codimension ofS, we may assume thatS is non-singular
By Theorem 5.3 one has

SSd−1(F ) = SSd−1(F ) \ π−1(S)∪ SSSd−1(F ).

Hence it is enough to show thatSSSd (F ) = ∅, or equivalentlyHj(µS(OX)) = 0 for j < d and
Hj(µZ(OX))|T∗

Z
X\T∗

S
X = 0 for j < d for any real analytic hypersurfaceZ of S. This is a

consequence of Lemma 6.1.
(ii) By (i), we may assume thatS is non-singular of codimensiond. Hence it is enough to

showSSSd (F ) = Supp(τ�dµS(F )). By the definition, we are reduced to proving

Hj
(
µZ(OX)

)∣∣
T∗

Z
X\T∗

S
X

= 0

for j � d and for any real analytic hypersurfaceZ of S. This is again a consequence
Lemma 6.1. ✷

Remark6.3. – WhenS is a closed smooth hypersurface, the inclusion

SS1(F )⊂ SS(F ) \ π−1(S)∪
(
SS(F ) ∩ T ∗SX

)

was obtained in [12].

LetΩ be an open subset ofX . We shall say for short thatΩ has a smooth boundary∂Ω if there
exists a real C1-functionϕ such thatdϕ �= 0 on the set{ϕ= 0} andΩ= {x∈X ; ϕ(x)< 0}.

COROLLARY 6.4. – LetΩ be an open subset ofX with smooth boundary, letM , F , S and
S0 be as in Proposition6.2and letΛ be a closed conic subset ofT ∗X . Assume that

Ch(M )⊂ Λ∪ π−1(S),

T ∗S0
X ∩ T ∗∂ΩX ⊂ T ∗XX,

Λ∩ T ∗∂ΩX ⊂ T ∗XX.
Then one has

SSd(F ) ∩ T ∗∂ΩX ⊂ T ∗XX.
In particular one has

Hj
(
RΓX\Ω(F )

)∣∣
∂Ω

= 0 for j � d.
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Example6.5. – Under the situation of Corollary 6.4, assume further thatΩ is pseudo-convex.
Let us denote byj :Ω ↪→ X the open embedding. ThenHk(Rj∗j

−1OX) = 0 for k �= 0, and
RΓX\Ω(OX)|∂Ω[1] is concentrated in degree0. Let us set for short:

s

x

r

verse
O+
X/OX =

(
j∗j
−1OX/OX

)∣∣
∂Ω

�RΓX\Ω(OX)|∂Ω[1].

Applying Corollary 6.4, we find that

ExtjDX

(
M ,O+

X/OX

)
= 0 for j < d.

Example6.6. – LetP be a differential operator onX whose principal symbolσ(P ) has the
form a(x)q(x, ξ) with a ∈ OX(X) andq ∈ OT∗X(T ∗X). Then takingDX/DXP asM , the

solution complexF is OX
P−→OX , whereOX is at degree0 and1. Takinga−1(0) andq−1(0)

asS andΛ, Corollary 6.4 implies

SS1(F )⊂ q−1(0)∪ {(x; ξ);a(x) = 0, ξ ∈ Cda(x)}.

By (3.10) and the distinguished triangle

Ker(OX
P−→ OX)→ F →Coker(OX

P−→ OX)[−1] +1−→,

one has also

SS1

(
Ker(OX

P−→ OX)
)
⊂ q−1(0)∪ {(x; ξ);a(x) = 0, ξ ∈ Cda(x)}.

Finally one has the following theorem which calculatesSSk(F ) in terms ofCh(M ). Here,
for a closed complex subsetZ of X , T ∗ZX meansT ∗Zreg

X whereZreg is the non-singular locu
of Z .

THEOREM 6.7. – Let M be a coherentDX -module, and letF be the solution comple
RHomDX (M ,OX). LetCh(M ) =

⋃
α∈A Vα be the decomposition ofCh(M ) into irreducible

components. LetYα be the irreducible complex analytic subsetπ(Vα) ofX . Then for any intege
k one has

SSk(F ) =
( ⋃

codimYα<k

Vα

)
∪

( ⋃
codimYα=k

T ∗Yα
X

)
.(6.3)

Proof. –The inclusion⊂ is a consequence of Proposition 6.2. Let us show the con
inclusion. Note that both sides are empty sets fork < 0. Hence arguing by induction onk, we
can assume that (6.3) holds fork− 1. Hence it is enough to show:

if codimYα = k− 1 andVα �= T ∗Yα
X, thenVα ⊂ SSk(F ),(6.4(i))

if codimYα = k, thenT ∗Yα
X ⊂ SSk(F ).(6.4(ii))

In both cases, we may assume thatY := Yα is a non-singular subvariety. Letj :Y →X be the
inclusion map.

Proof of (6.4(i)). –It is enough to show that for any open subsetU of T ∗X with a non-empty
intersection withVα, SSk(F ) ∩ U is non-empty. We may assume thatCh(M ) ∩ U = Vα ∩ U
andVα∩U → Y is a smooth morphism. SinceVα ⊂ π−1(Y ), we may assume, by shrinkingU if

4e SÉRIE– TOME 36 – 2003 –N◦ 4



TRUNCATED MICROSUPPORT AND HOLOMORPHIC SOLUTIONS OFD-MODULES 597

necessary, thatER

X ⊗DX M |U � ER

X←↩Y ⊗EY N |U for a coherentEY -moduleN [11]. For any
smooth complex hypersurfaceZ of Y , one has by [11]

k
( ) (

k
( ))

ence

a

i-
H µZ(F ) �HomDX M ,H µZ(OX)

�HomER

X

(
ER

X ⊗DX M ,Hk
(
µZ(OX)

))
�HomER

X

(
ER

X←↩Y ⊗EY N ,Hk
(
µZ(OX)

))
� jd∗j−1

π HomEY

(
N ,H1

(
µZ(OY )

))
onU ∩ T ∗ZX . Hence the result follows from the following lemma which is an easy consequ
of the classification theorem for coherentE-modules at generic points of their supports.

LEMMA 6.8. –Let V be a non-empty(locally closed) smooth submanifold oḟT ∗Y such that
V → Y is smooth, and letN be a coherentEY -module defined on a neighborhood ofV
such thatSupp(N ) = V . Then there is a smooth complex hypersurfaceZ of Y such that
HomEY (N ,H1(µZ(OY )))|V ∩T∗

Z
X �= 0.

Proof. –By the generic classification theorem in [11],E∞Y ⊗EY N is a de Rham system
by shrinking V if necessary. There exists a smooth complex hypersurfaceZ of Y such
that T ∗ZY ⊂ V . Then by a quantized contact transform,E∞Y ⊗EY N andH1(µZ(OY )) are
transformed to(E∞

Cn/(
∑s

i=1 E∞Cn∂i))⊕m andH1(µ{zn=0}(OCn)) with s < n andm> 0. In this
case, the assertion is obvious.✷

Proof of (6.4(ii)). –The proof is similar to that of (6.4(i)). Note thatVα containsT ∗YX . By
shrinkingY if necessary, we may assume thatCh(M ) is equal toVα on a neighborhood of
point p in T ∗YX . Then on a neighborhood ofp, ER

X ⊗DX M is isomorphic toER

X←↩Y ⊗DY N
for a coherentDY -moduleN with Supp(N ) = Y on a neighborhood ofπ(p). One has then
by [11]

Hk
(
µY (F )

)
�HomDX

(
M ,Hk

(
µY (OX)

))
�HomER

X

(
ER

X ⊗DX M ,Hk
(
µY (OX)

))
�HomER

X

(
ER

X←↩Y ⊗DY N ,Hk
(
µY (OX)

))
� π−1HomDY (N ,OY )|T∗

Y
X .

Hence the assertion follows from the following well-known result.✷
LEMMA 6.9. –If a coherent DX -module M satisfies Supp(M ) = X , then one has

Supp(HomDX (M ,OX)) =X .

By the Riemann–Hilbert correspondence of perverse sheaves and holonomicD -modules, we
have the following description of the truncated microsupport of perverse sheaves.

COROLLARY 6.10. –Let F ∈ Db(CX) and let{Xα}α∈A be a family of complex subman
folds such thatXα andXα \Xα are closed complex analytic subsets and

SS(F ) =
⋃
α∈A

T ∗Xα
X.

If F is a perverse sheaf(i.e. there is a holonomicDX -moduleM such that

F �RHomDX (M ,OX)),
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then one has

SSk(F ) =
⋃

T ∗Xα
X for anyk.(6.6)

hat

t

ns aux

ns,

ial

.

.,

ture
codimXα�k

Conversely ifF ∈Db(CX) is C-constructible and if it satisfies

SSk(F ) ∪ SSk
(
RHom (F,CX)

)
⊂

⋃
codimXα�k

T ∗Xα
X for anyk,(6.7)

thenF is a perverse sheaf.

Proof. –It is a direct consequence of Theorem 6.7 that the perversity ofF implies (6.6).
Conversely assume (6.7). In order to prove thatF is a perverse sheaf, it is enough to show t
F is microlocally isomorphic toCXα [− codimXα]⊕m for somem at a generic point ofT ∗Xα

X
by [8, Theorem 10.3.12]. By [8],F is isomorphic toCXα [− codimXα]⊗K at a generic poin
of T ∗Xα

X for someK ∈Db(C). SinceµXα(F ) must be inD�codimXα(CT∗
Xα

X) and

µXα(F )� CT∗
Xα

X [− codimXα]⊗K,

one hasK ∈D�0(C). Similarly,

µXα

(
RHom (F,CX)

)
� CT∗

Xα
X [− codimXα]⊗RHom (K,C)

impliesK ∈D�0(C). ✷
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