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POISSON KERNEL CHARACTERIZATION OF
REIFENBERG FLAT CHORD ARC DOMAINS

BY CARLOS E. KENIG! AND TATIANA TORO?

ABSTRACT. — In this paper we prove the conjecture stated by the authors in Free boundary regularity for
harmonic measures and Poisson kernels (Ann. of Math. 150 (1999) 369-454) concerning the free boundary
regularity problem for the Poisson kernel below the continuous threshold. We showthatafReifenberg
flat chord arc domain, and the logarithm of the Poisson kernel has vanishing mean oscillation then the unit
normal vector to the boundary also has vanishing mean oscillation.
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RESUME. — Dans cet article, on démontre la conjecture proposée par les auteurs dans Free boundary
regularity for harmonic measures and Poisson kernels (Ann. of Math. 150 (1999) 369-454) concernant la
régularité de la frontiére libre pour le noyau de Poisson au-dessous du seuil de continuité. On prouve que si
Q est un domaine corde-arc Reifenberg plat tel que le logarithme du noyau de Poisson appartienne a VMO,
alors le vecteur unitaire normal a la frontiére appartient aussi a VMO.
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1. Introduction

The main goal of this paper is to present a general blow up argument (see Section 4) which
combines geometric and analytic information about the free boundary regularity problem for the
Poisson kernel. This technique allows us to provide a complete characterization of Reifenberg flat
chord arc domains via potential theory. In particular we prove the conjecture stated in [18], and
show that the “weak” regularity of the Poisson kernel of a domain fully determines the geometry
of its boundary. Namely we show that(f is a 6-Reifenberg flat chord arc domain fér> 0
small enough, and the logarithm of its Poisson kernel has vanishing mean oscillation then the
unit normal vector to the boundary also has vanishing mean oscillation. In our context the mean
oscillation of the logarithm of the Poisson kernel, or of the unit normal vector replace stronger
notions of regularity. As in Alt and Caffarelli’s work (see [1]) we show that at “flat points” of
the boundary, the oscillation of the Poisson kernel controls the geometry of the boundary. The
difference between our work and the work in [1] is that we measure the oscillation in an integral
sense BMO estimates) while they do so in a pointwise sense (Holder estimates).

We now introduce formally the definitions needed to state our main results. We indicate how
the main theorem follows from the other results, and sketch briefly the contents of each section
of the paper. We always assume that 2.
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324 C.E. KENIG AND T. TORO

DEFINITION 1.1.-LetX c R**! be a locally compact set, and I&t> 0. We say that is
5-Reifenberg flatf for each compact sek’ ¢ R**+!, there existsky > 0 such that for every
Q € KN X and everyr € (0, Rk] there exists am-dimensional pland.(Q, r) containing®
such that

(1.1) %D[EﬂB(Q,r},L(Q,r)ﬂB(Q,T)] < 4.

Here B(Q,r) denotes thén + 1)-dimensional ball of radius and center), andD denotes the
Hausdorff distance.

Recall that ford, B c R**1,
D[A, B] =sup{d(a, B): a € A} +sup{d(b,A): be B}.
Note that the previous definition is only significant #r> 0 small. This notion was initially

introduced by Reifenberg who proved the following remarkable theorem.

THEOREM[21,23]. —There exist9 > 0 depending only om so that ifY is §-Reifenberg flat
then locally¥: is a topological disc.

We denote by

1
(1.2) 9(Q,r)_i%f{;D[zmB(Q,r),LmB(Q,r)}},
where the infimum is taken over allplanes containing).
DEFINITION 1.2.— LetY c R**!, we say thats is Reifenberg flat with vanishing constant

ifitis 6-Reifenberg flat for somé > 0 and for each compact s&t ¢ R™**

lim sup 6(Q,r)=0.
r=0QesnK

DEFINITION 1.3.—A measurg in R"*! is said to beAhlfors regularif there existsC' > 1
such that foiQ) € spt  andr >0

(1.3) C 1l < /L(B(Q,T)) <Cr™.

DEFINITION 1.4.— LetQ2 c R**! be a set of locally finite perimeter (see [7J)2 is said to
be Ahlfors regular if the surface measure to the boundary, i.e., the restrictionoftlineensional
Hausdorff measure t0(2, o = H" L 912, is Ahlfors regular.

DEFINITION 1.5.—LetQ c R"™!. We say that2 has theseparation propertyf for each
compact seik C R™*! there existd? > 0 such that folQ € 9Q N K andr € (0, R] there exists
ann-dimensional planeZ(@,r) containing@ and a choice of unit normal vector #(Q, ),
nig,,. satisfying

(14) T+(Q’T): {X_ (Iat):I_FtW GB(QaT): er(er)v t> %T} CQv

and

1.5 7-(Q,r)= {X— (z,t) =z +thg, € B(Q,r): € L(Q,r), t < —ir} c Q°.
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REIFENBERG FLAT CHORD ARC DOMAINS 325

Moreover if Q is an unbounded domain we also require tR&t 1\ divide R"*! into two
distinct connected componerfisandint ¢ # ().

The notation(z, t) = x + tig,, is used to denote a point R"*!. The first component;, of
the pair belongs to an-dimensional affine space whose unit normal vectaérgs. . The second
component belongs toR. From the context it will always be clear what affine hyperplane
belongs to, and what the orientation of the unit normal vector is.

DEFINITION 1.6.— Lets € (0,4,), whered,, is chosen appropriately (see note below) and let
Q c R*1. We say thaf? is aé-Reifenberg flat domaiar aReifenberg flat domaiif 2 has the
separation property arif? is 0-Reifenberg flat. Moreover & is an unbounded domain we also
require that

(1.6) sup sup 6(Q,r) < 0p.
>0 QedN
When we considef-Reifenberg flat domains iR”*! we assume that, > 0 is small enough,

in order to ensure that we are working on NTA domains (see definition in Appendix A, see also
[14] and [19, Theorem 3.1]).

DEFINITION 1.7.—A setQ) C R"! is said to be aReifenberg flat domain with vanishing
constanif Q is a Reifenberg flat domain, and for every compact/§et R *!

1.7) lim sup 6(Q,r)=0.
r=0QesnK

DEFINITION 1.8.— A set of locally finite perimete2 ¢ R"** (see [7]) is said to be ehord
arc domain if 2 is an NTA domain whose boundary is Ahlfors regular.

DEFINITION 1.9.— Lets € (0,4,,). A set of locally finite perimetef2 C R"*! is said to be a
0-Reifenberg flat chord arc domaiifi 2 is ad-Reifenberg flat domain whose boundary is Ahlfors
regular.

Remarks— (1) Sincef) is ad-Reifenberg flat domain with > 0 small enough, then for each
compact sefs ¢ R"*! so thatd2 N K # () there existsRx > 0 so that for every) € 9Q N K
and everyr € (0, Ri ) there exists am-planeL(Q, 2r) containing® and such that

(1.8) %D[@QHB(Q,%);L(Q,%)ﬂB(Q,2r)] <20,

(1.9) {X=(2,t)=2+tW (Q,2r): x € L(Q,2r),t > 46r} N B(Q,2r) C Q,
and

(1.10) {X =(z,t)=2+t7W(Q,2r): € L(Q,2r),t < —46r} N B(Q,2r) C Q°.

Here @ (Q,2r) denotes the appropriate unit normal vectori¢Q, 2r), where we choose
L(Q,2r) to be the “best” possible approximatimgplane tod) at @ and at radiu®r. (See
Remark 1.1 in[18].)

(2) By Remark 4.2 in [18] we have that § is a set of locally finite perimeter which is a
Reifenberg flat domain then the topological boundarflaind its measure theoretic boundary
agree.

DEFINITION 1.10. - Let) € (0,6,). A set of locally finite perimete (see [7]) is said to be a
0-chord arc domairor achord arc domain with small constaiit( is ad-Reifenberg flat domain,
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326 C.E. KENIG AND T. TORO

09 is Ahlfors regular and for each compact $etc R"*+! there exists? > 0 so that

(1.11) sup |77 [1.(Q. R) < 6.
QEINNK

Herem denotes the unit normal vector to the boundary,

(112) 17 (@ R) = sup < / |ﬁ—m|2da>2

0<s<R
B(Q,s)

anan_rs = fB(Q,s)W do.

We only use the notation-Reifenberg flat domainj-Reifenberg flat chord arc domain or
0-chord arc domain when we want to emphasize the dependeric@trerwise we simply refer
to them as Reifenberg flat domain, Reifenberg flat chord arc domain or chord arc domain with
small constant. Note that a chord arc domain with small constant is a Reifenberg flat chord arc
domain.

DEerFINITION 1.11.— A set of locally finite perimeter is said to belaord arc domain with
vanishing constanif it is a chord arc domain with small constant and for each compact set
K Cc Rt
(1.13) lim sup ||7(Q,r)=0.

r=0Qeoank

We now present the definition of bounded (resp. vanishing) mean oscillation functions on the
boundary of a chord arc domaiiy i.e., BMO(992) (resp.VMO(00)).

DEFINITION 1.12.— LetQ c R™*! be a chord arc domain. Lete L7 (do), we say that
f € BMO(09) if

1
2
(1.14) I =sup sup (17~ fo,d ) <o,
>0 QednN

B(Q,r)

Herefo.r = fB(o.r f do, ando = H" L 0.

DEFINITION 1.13.—LetQ) ¢ R"*! be a chord arc domain. We denote BMO(092) the
closure inBMO(92) of the set of uniformly continuous bounded functions defined@n

The reader will remark that Definition 1.13 is slightly different than the one used in [18] (see
Definition 1.8 in [18]). These& definitions coincide in the case whénis bounded. In the case
when(2 is unbounded, Definition 1.13 above provides good control on the behaviandéarge
balls (see discussion below). This is not the case for the definition used in [18].

Let Q2 be a Reifenberg flat chord arc domain (either bounded or unbounded), akid=l€1;
then the harmonic measure with pole ¥t wX ando = H" L 952 are mutually absolutely
continuous (see [4] and [25]). The Radon—Nikodym theorem ensures that the corresponding
Poisson kernel

dwX 0G(X,—)

hx(Q) = S (@) = 5 Q) € Lieldo).

Here G(X, —) denotes the Green’s function 8f with pole atX and % =V -7 denotes the
normal derivative at the boundary. We prove that ifs a Reifenberg flat chord arc domain, and
logkx € VMO(do) then( is a Reifenberg flat domain with vanishing constant.
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REIFENBERG FLAT CHORD ARC DOMAINS 327

THEOREM 1.1. — Assume that
(1) © c R"*!is aé-Reifenberg flat chord arc domain for sofie- 0 small enough
(2) logkx € VMO(do).

Then(2 is a Reifenberg flat domain with vanishing constant.

As mentioned above, under the previous assumptions we conclude also that the harmonic
measure is asymptotically optimally doubling (see Definition 1.5 in [18] and Theorem 4.1
in [19]). Hence combining Theorem 1.1 above with Theorems 5.3 or 5.4 in [18] (and taking
into account our modified version &fMO(do)) we conclude that the following results hold
both for bounded and unbounded domains.

THEOREM 1.2. — Assume that
(1) © c R™*!is a chord arc domain with small enough constant.
(2) logkx € VMO(99).

Then(} is a chord arc domain with vanishing constant.

Furthermore wher) is an unbounded Reifenberg flat chord arc domain, the harmonic
measure with pole at infinityy and o = H"™ L 9Q2 are mutually absolutely continuous. The
Radon—-Nikodym theorem ensures that the Poisson kernel with pole at irf{dity= g—‘;(Q) €
Li .(do). As before we prove that & is an unbounded Reifenberg flat chord arc domain, and
logh € VMO(do) then() is a Reifenberg flat domain with vanishing constant.

THEOREM 1.3. —Assume that
(1) © c R**! is an unbounded-Reifenberg flat chord arc domain for somie> 0 small
enough
(2) logh € VMO(do).
Then( is a Reifenberg flat domain with vanishing constant. Moreovar=f1 H"-a.e. inof2,
then( is a half space.

Combining Theorem 1.3 above with the Main Theorem in [18] (and taking into account our
modified version oV MO(do)) we conclude that the following result holds.

THEOREM 1.4, —Assume that
(1) © c R™*!is an unbounded chord arc domain with small enough constant
(2) logh € VMO(092).

Then( is a chord arc domain with vanishing constant.

A more in depth analysis of the blow-up sequence described in Section 4 allows us to prove
that the conjecture stated in [18] holds.

MAIN THEOREM. —Assume that
(1) © c R**! is a (unboundell 6-Reifenberg flat chord arc domain for somie- 0 small
enough
(2) logkx € VMO(do) (logh € VMO(do)).
Then( is a chord arc domain with vanishing constant, i’®.,€ VMO(do).

Remark— Note that in [19] we have shown the converse of this, namely tatifR"*+! is
a ¢-Reifenberg flat chord arc domain amt € VMO(do) thenlogkx € VMO(do) for every
X e

Jerison (see [13]) introduced this “end point” problem in higher dimensions, but treated it
under more restrictive assumptions, namely that the boundary is given locally as a Lipschitz
graph, and the normal derivative data is continuous as opposed to having vanishing mean
oscillation. His paper is based on the work of Jerison—Kenig [15] and first points out the
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328 C.E. KENIG AND T. TORO

connection with the work of Alt and Caffarelli [1]. There is an error in Lemma 4 of Jerison’s
paper. Nevertheless in our previous work (see [18]) we made considerable use of the ideas in [13].
In this paper we bypass this approach. The basic difference between the Main Theorem above and
the Main Theorem in [18] (see Section 5) is that in [18] we needed to assume that the harmonic
measure was asymptotically optimally doubling and thathad smallBMO norm. The main
ingredient of the proof in [18] was a decay-type argument. The assumption tHabifenorm
of m was small gave us a starting point for the argument. The main ingredient of the proofs in
this paper is a blow-up and hence the assumption oB¥& norm of 7@ is not necessary.

It is interesting to compare our results with those of Alt and Caffarelli [1]. In both cases the
oscillation of the logarithm of the Poisson kernel controls the geometry (i.e., the “flatness”) of
the boundary and the oscillation of the unit normal.

THEOREM[1]. — Assume that

(1) © c R**!is aé-Reifenberg flat chord arc domain for soe- 0 small enough

(2) logkx € C%P (or logh € C°P) for somes € (0, 1).
Then(Q is a C1® domain for somex € (0,1) which depends o and n. Moreover if(2 is
unbounded and = 1 then(? is a half-plane.

Jerison showed that = 8 (see [13]). We would like to emphasize that the hypothesis 1
above is necessary. Keldysh and Lavrentiev (see [17] and [6]) constructed a dofRaiwhose
boundary is rectifiable but not Ahlfors regular, whose Poisson kernel is identically equahtb
which is notC. Moreover there are examples of domain®ihwhose boundary is Reifenberg
flat with vanishing constant, rectifiable but not Ahlfors regular, for which the logarithm of the
Poisson kernel is Holder continuous and which are not €/edomains (see [6]). Furthermore
if n > 2 there are examples of chord arc domains satisfying hypothesis 2, whose boundaries are
notC, they contain a neighborhood of the vertex a double cone (see [1] and [18]). These results
should also be compared with Pommerenke’s theorem [22]:

THEOREM [22]. —Let Q C R? be a chord arc domain. Thefl is a chord arc domain with
vanishing constant if and onlyliég kx € VMO(0%2).

We would like to point out that our proofs use a modified version of Alt and Caffarelli’s result
(see Theorem 2.2 and [20] for a proof).

We now sketch the content of each one of the sections. In Section 2 we prove some technical
lemmas which play a central réle in Sections 3 and 4. These results are of two types: either
boundary regularity of non-negative harmonic functions on Reifenberg flat domains, or regularity
statements for functions of vanishing mean oscillation. The proofs of Theorem 1.1 and the Main
Theorem are accomplished in 2 main stages, described in Sections 3 and 4. In Section 3 we prove
gradient bounds for the Green’s function in terms of the integral of the corresponding Poisson
kernel, provided its logarithm has vanishing mean oscillation. In Section 4 we describe a general
construction of a blow up sequence for a Reifenberg flat chord arc domain whose Poisson kernel
has logarithm in VMO. In Section 4 we also prove the Main Theorem. The estimates obtained in
Section 3 ensure that the limit of this blow up sequence satisfies the hypothesis of Theorem 2.2
(see [20]). Section 4 constitutes the core of this paper. In Appendix A we prove Lemma 3.2 and
Rellich’s identity for chord arc domains with small constant, verifying a point left open in [18].

In particular in Appendix A we construct an approximation of Reifenberg flat chord arc domains
by interior chord arc domains. This is a very useful tool in potential theory.

We finish this introduction by briefly sketching the proof of Theorem 1.1 and Theorem 1.3.
This is an application of the blow up technique described in Section 4KLet R"*! be a
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REIFENBERG FLAT CHORD ARC DOMAINS 329

compact set, and let

(1.15) I=1lim sup 6(Q,r).
r=0QeooNnK
Our goal is to show that= 0. There exist sequencé®); };>1 C 92N K, and{r;};>1 CR
such thalim; o, Q; = Qso, 0 <7, lim; .o, ; = 0 @and

11— 00

We consider the blow up sequendes=r; ' (2 — Q;), 9 =71 (0Q — Q;), ui, w; andh;
associated witlf); andr; as described in Section 4.

Theorem 4.1 ensures that there exists a subsequence (which we relabel) satisfyirg..,
09Q; — 00 in the Hausdorff distance sense uniformly on compact sets (see Definition 2.1)
andu; — us, uniformly on compact sets, whete,, satisfies hypothesis (2.35). Furthermore
w; = ws. Theorems 4.2 and 4.3 guarantee thathif = Zj‘;—w then uy, and h, satisfy
hypothesis (2.36) and (2.37). Theorem 2.2 allows us to concludethats a half plane in
R™"* and Q.. is ann-plane. Sinceds); converges tdS),, in the Hausdorff distance sense
uniformly on compact sets an@d € 92, for eachk > 1, givene > 0 there exists, > 1 so that

for k > ko

(1.17) D[0S2% N B(0,1); 000 N B(0,1)] <e.
Hence
1
(1.18) 0(Qp,rr) < ED[aQ N B(Qrsrr): L 0 B(Qr,71)] <,

whereL; = 00 + Qi is ann-plane through)).. Since by (1.16) = limy .o, 0(Qk, 7k ), We
conclude that = 0.

2. Preliminaries

In this section we prove some technical lemmas that will be useful in the rest of the paper.

DerINITION 2.1 (Uniform Hausdorff convergence on compact set€Given a sequence of
closed setd 4;}; in R**! we say thatd; converges to a closed sdtc R"*! (i.e., A; — A)
in the Hausdorff distance sense uniformly on compact set®"0f' if for any compact set
K c R**! and anye > 0 there existsg > 1 so thati > i

(2.1) sup{dist(z, A): x € 4; N K} +sup{dist(z, 4;): € ANK} <e.

Given a sequence of open sdi&;}; in R"*! we say thatlU; converges to an open set
U Cc R**! (i.e. U; — U) in the Hausdorff distance sense uniformly on compact se"df'
if Uf — U*¢ in the Hausdorff distance sense uniformly on compact seks'of..

For A, B, C closed subsets @&"*!, we use the convention théist (z, B) = +oco whenB = ()
butsup{dist(z, A): x € C} =0 whenC = 0.

DEFINITION 2.2.— Letu be a Radon measure &% *!. We say thaf is adoubling measure
if there existsC > 1 so that every) € spt u and everyr > 0

(2.2) 1(B(Q.2r)) < Cp(B(Q.7).

Herespt 1 denotes the support of the measure
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The following lemma gives an improvement of the conclusion of Lemma 4.1 in [14] in the
Reifenberg flat case.

LEMMA 2.1. - Givene > 0 there exists) = d(n,e) > 0 so that ifQ is a -Reifenberg flat
domain, then for everyg c R™*!, there existsRx > 0 so that ifr € (0, Rx), Q € 00N K,
and u is a non-negative harmonic function in N B(Q,4r) which vanishes continuously on
00N B(Q,4r), we have forX € B(Q,r) N Q2

sup u(Y)
Y €dB(Q,2r)NQ

|X—Q|>“

r

(2.3) w(X) < c<

whereC depends only o, n ande.

Proof. —Let vy satisfy Avg =0 in QN B(Q,2r), vo =1 0n9dB(Q,2r) N andvy =0 on
B(Q,2r) N dN. By the maximum principle foX € QN B(Q,r)

(2.4) u(X) <[ sup u(Y)]vo(X).
Y €9B(Q,2r)NQ

Since is ad-Reifenberg flat domain Remark 1.1 in [14] holds. Let
(2.5) A={X =2+t (Q,2r);z € L(Q,2r);t > —44r}.

Let hq satisfy

Aho=0 onAnB(Q,2r),
(2.6) ho=0 ondAN B(Q,2r),

ho=1 onAnNoB(Q,2r).
By the maximum principlevy (X) < ho(X) for X € QN B(Q,2r). Consider the function
go defined bygo(z + t7 (Q,2r)) =t + 407; go iS a non-negative harmonic function on

AN B(Q,2r), go = ho =0 on A N B(Q,2r), and therefore by the Comparison principle
(Lemma 4.10 in [14]) we have that fdf € B(Q,r) N Q2

- o) Cl@+ET @2

andif X =z +t7 (Q,2r)

2.8) ho(X) < L +r457".

Thus forX € B(Q,0r) nQwith§ <1

(2.9) vo(X) < ho(X) < C(0+9).

An iteration process ensures that fox 1

(2.10) w(X) < [CO+36)]" for X € B(Q,0%) nQ.
In particular

(2.11) vo(X) < (200)%  for X € B(Q,8%r) n Q.
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By choosing’ > 0 small enough we can ensure th&ts < 6' ¢, which implies that

(X -Ql
T

l1—e
(2.12) vo(X) <C< > for X € B(Q,r).

Combining (2.4) and (2.12) we obtain (2.3)0
Notation — ForQ2 € R"*! as above and € ) we denote by (X) = dist(X, 99).

COROLLARY 2.1.— Givene > 0 there exists) = §(n, ) > 0 so that ifQ2 is a §-Reifenberg
flat domain then for everfk C R"*1, there existsx > 0 so that ifr € (0, Ri), Q € 90N K
and u is a non-negative harmonic function in N B(Q,4r) which vanishes continuously on
00N B(Q,4r), we have forX € B(Q, ) N2

1—e¢
(2.13) u(X) <C<@> sup u(Y)
r Y €OB(Q,4r)NQ

whereC depends only o, n ande.

Proof. —Apply Lemma 2.1 tok = (K,2Ry) = {X € R dist(X, K) < 2Rk}, for Rg
as above. Ifr < min{Rk,1}, Q € KNoQ, andP € B(Q,r) N9 C K N 9IN; (2.3) and the
maximum principle yield that foX € B(P,r) N Q

sup (Y,

r Y €dB(Q,4r)NQ

1-¢
(2.14) u(X) < C(M>
which implies (2.13).
COROLLARY 2.2.-Givene > 0 there exists) = §(n,e) > 0 so that ifQ2 is an unbounded
Reifenberg flat domain such that

(2.15) sup sup0(Q,r) <4,
Qo r>0

andw is a non-negative harmonic function §& which vanishes continuously @if2, then for
QedN,R>0,andX € B(Q,R)NQ

1—¢
(2.16) u(X) §C<w> sup u(Y),
R Y €0B(Q,2R)NQ

whereC depends only on ande.

Proof. —Note that since (2.15) holds for each compactiet R*+!, we can takeR x = oo,
thus (2.16) follows from (2.13). O

COROLLARY 2.3.—Givene > 0 there exist$ = §(n, ) > 0 so thatifQ is ad-Reifenberg flat
domain,Q, € 012, andu is a non-negative harmonic function &M B(Q, 4 R) which vanishes
continuously o N B(Q, 16Ry), then forX € B(Qo, Ro) N2

1—¢
(2.17) u(X) < C(@) sup u(Y),
Ry Y €0B(Qo,16Ro)NQ

whereC depends orRy, £ andn.
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Proof. —Let K = B(Qo, 16R,), Corollary 2.1 ensures that there exigtg > 0 so that for
ro = %min{Ro,RK}, Qeonn B(QQ,RQ), andX e B( , %)) neQ,

@)15

Y
o sup u(Y)

Y €8B(Q,4R0)NQ

u(X) <c<

1—e
(2.18) <C(&)1_8 (ﬁ) sup u(Y).
o Ry Y€0B(Qo,16R0)N

Furthermore by Harnack’s principle fof € B(Qo, Ro) N with 6(X) > % we have

§(X) l1—e
(2.19) u(X)<C sup uY)<C| —= sup u(Y).
Y €0B(Qo,16Ro)NQ To Y €0B(Qo,16Ro)NQ

Combining (2.18) and (2.19) we obtain (2.17)0

The following theorem is a consequence of the John—Nirenberg inequality [16], see Garnett
and Jones [10] or [9, Chapter 4] in the Euclidean case. As they point out the result remains true
on an Ahlfors regular set. This is not surprising since most of the proof relies on a Calderon—
Zygmund type decomposition, which is possible in this case thanks to the existence of a family
of dyadic cubes (see [2] or [5, Chapter 3]).

THEOREM 2.1. - LetQ) ¢ R**! be a chord arc domairf € VMO(992) andh = e/ then for
all @ € 99, r € (0,diam ) andg < oo

(2.20) (/ hqda)é <¢, f na

BQ) BQ)
1
(2.21) ( / h—Qda)qgcq / h~do.
BQ) BQ)

Here C,, only depends on th€éMO character off, onn, ¢ and the Ahlfors constant far.

Proof. —Since f € VMO(9Q2), then f € BMO(912) and there exitp > 1 such thath,
h~! € A,. Since VMO(99) is the closure of the class of bounded uniformly continuous
functions inBMO(99?) in 052, then

(2.22) dist(f.L%) = inf {|I/ ~g]l} =0

where|| - || denotes the norm iBMO(912) see Definition 1.12. Combining Corollary 1.1, and
Lemma 1.4 in [10] we conclude that h~! € A, foreveryg>1. O

COROLLARY 2.4.—LetQ) Cc R""! be a chord arc domain antbg h € VMO(952), then for
alle>0,Q €09, re (0,diam®), andE C B(Q,r) NN

S (_olB) \TT o w(B) o)
(223) Ca (U(B(Q,r))> <(,‘)(B(CQ,T‘))<61‘€<0'(-B(Qv7a))) ’

wherew(A) = [, hdo. HereC. only depends on,  and the Ahlfors constant of.
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Proof. —Letg= 1. ForE C 90N B(Q,r), applying (2.20) we have

£
AN
w(E)é/hdaé( / hqda) (/da)
E B(Q,r) E

1

h? da) _a(E)P

Q=
)
Q=

< U(B(Q,T))

B(Q,r)
<cqa(B(Q,r))%( f hda)a(E)l :
B(Q,r)
70(E) 1_5(,0 T

(2.24) <CE(G(B(Q,T))) (B(@,r)),
which shows that

w(E) o(B) \'°
(229) w(B(Q,r»“E(a(B(Q,r'))) |

Sinceo(A) = [, h~'dw, the argument above applied to'! rather thanh, yields the first
inequality in (2.23). O

Let us finish this section by specifying our set up. Det R™*! be as-Reifenberg flat chord
arc domaind > 0 is chosen so thd? is an NTA domain, see [19]). Let C 2 be fixed, and let:
denote the Green'’s function 6fwith either pole at infinity (see [18, Lemma 3.7]) or the Green’s
function of Q with pole atA. By the results of [25] or [4] we know that andw” the harmonic
measures of2 with pole at infinity and pole atl respectively ared . -weights with respect to
o, the surface measure to the boundary.Lgt= % denote the Poisson kernel with polet
andh = Z—ﬁ denote the Poisson kernel with pole at infinity. Recall that dfenotes the Green’s
function with pole at infinity we have

Au=0 inQ,
(2.26) {u_o on o,
u>0 inQ,
and
(2.27) /uAcp = /(pdw = / phdH" forall p € C° (R"Jrl).
Q o0 a0

Similarly note that ifu denotes the Green'’s function with polethen we have

Au=0 inQnNB(Q,R),
(2.28) u=0 ondQNB(Q,R),
u>0 onQNB(Q,R),

and

(2.29) /um:/@d&:/mdun forall p € CF (B(Q, R)),
Q o o0
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forany@ € 9Q andR > 0 so thatA ¢ B(Q, R). In order to unify our presentation we denote by
w the harmonic measure with either finite or infinite pole, andhlihe corresponding Poisson
kernel.

The following 2 lemmas are used in the proof of Lemma 4.2. We present them here to avoid
interrupting the flow of ideas in Section 4. The first lemma is essentially Lemma 5.4 in [18].

LEMMA 2.2.-LetQ Cc R"™! be ad-Reifenberg flat chord arc domain. Lét € ) then for
H™ a.e.Q € 092

WX(Q) _kx(@ _ . wXBQr) . GX.Z)

(2.30) do  h(Q)  x=0 w(B@Q,r)  z20 u(Z)

Here w* denotes the harmonic measur@(X, —) denotes the Green’s function, ahg; the

Poisson kernel fof) with pole atX. Let K (X, Q) = k,f(g"%) . There exist constants > 1, Ny > 1

anda € (0,1) so that fors € (0,diam ), andQo € 09, if X € Q\B(Qo,2Nys), then for every
P,Q € B(Qo,s) NN

— PI\¢“
231 K-k p) <oxxa()

Although the hypothesis above are somewhat weaker than those in the statement of Lemma 5.4
in [18], the reader will easily check that the proof presented in [18] works in this setting. Simply
note thatv™, w ando are doubling measures @42 andw™, w € A, (do). Thusw® andw are
mutually absolutely continuous, and the proof presented in [18] goes through.

LEMMA 2.3.-Let Q) c R"*! be aé-Reifenberg flat chord arc domain. Assume thahe
Poisson kernel satisfies for &) € 012, andr € (0, diam )

(2.32) ( f thU)%gco f hdo.

B(Q,r) B(Q,r)

There exist constant§’ > 1 and Ny > 1 so that forr € (0,diam$), and @ € 99 if
X € O\B(Q, 2Nyr) then

1
2

(2.33) ( / kﬁda) <C f kx do.

B(Q,r) B(Q,r)

Proof. —Let Ny > 1 beasinLemma2.2. L&} € 012, r € (0, diam Q) andX € Q\B(Q,2Nr),
then using (2.31) and (2.32) we have

2

( / k% (P) da(P)>

B(Q,r)

:< / Z%((ﬁ))hQ(P)do(P))%<CK(X,Q)( f hQ(P)da(P))%
B{Q.n) B{Q.n

<CK(X,Q) / h(P)do(P)

B(Q,r)
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<C / h(P Q) - K(X,P)]do(P)+C f h(P)K(X, P)do(P)
B(Q.r) B(Q.r)
(2.34) <C / hP)K(X,P)do(P)<C / kx(P)do(P). O
B(Q.r) B(Q.r)

We finish this section with the statement of a theorem that plays a crucial role in our proof. It
generalizes some of the results that appear in [1]. In Sections 7 and 8 of [1], Alt and Caffarelli
prove that ifQ is a Reifenberg flat chord arc domain angh € C%4(9Q) for someg € (0,1)
thenQ) is aC'* domain for somex € (0,1). In particular they show that it = 1 then(} is a
half space.

THEOREM 2.2. — There exist$,, > 0 so that ifQ2 ¢ R™*! is an unbounded-Reifenberg flat
chord arc domair(for ¢ € (0,4,,)) andv andk satisfy

Av=0 inQ,
(2.35) v>0 in ,

v=0 on o,
and
(2.36) /UAcp = /cpk dH™ forall p € C°R™H

Q o0

with
(2.37) sup |[Vu(X)| <1 and k(Q)>1 forH" a.e.Q € o,

XeQ

then() is a half space, and in suitable coordinatgs:, ©,,+1) = Tn41-

Note that the uniqueness (modulo multiplication by a positive constant) of the Green'’s function
with pole at infinity for unbounded NTA domains allows us to conclude that 1 on 92
(see [19]). The proof of Theorem 2.2 follows the same steps as the argument presented in
Sections 7 and 8 of [1], for a proof see [20].

3. Gradient bound for the Green’s function

As mentioned in the introduction the proofs of our results are doRestages. First we give
a bound for the gradient of the Green’s function in terms of the integral of the Poisson kernel.
Second we use this estimate to produce a blow up sequence whose limit satisfies the hypothe-
sis of Alt and Caffarelli’s result as stated in Theorem 2.2. In this section we prove the gradient
estimate.

From now on we assume th@tc R" ! is ad-Reifenberg flat chord arc domain, where- 0
is chosen so that, in the unbounded case Corollaries 2.2, and 2.3 hald=fdr and in the
bounded case Corollary 2.3 holds fo= 1. Moreover we assume thitg h € VMO(99). This
hypothesis ensures thiate L2 (do) and that forQ € 99, r € (0,diam Q), ands € (0, r)

(3.1) ( f h2da) <C f hdo,
B(Q,r) B(Q,r)
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(3.2) C_1<o<B<Q,s>>)l+8n L w(B(Q:9)) <C(au_ff(cz,s»)l
o(B(Q,r)) w(B(Q,7)) o(B(Q,r))
whereC' is a constant that only depends®opand the Ahlfors constant of.

Recall thatu denotes either the Green'’s function with péles Q or with pdle at infinity (if
Q is unbounded)h denotes the corresponding Poisson kernel arte associated harmonic
measurelw = hdo. We denote by one quarter of the distance from the poleuoto 012, i.e.,
(=06(A)/4orl=+c0.

THEOREM 3.1.-Let 2 C R"*! be ad-Reifenberg flat chord arc domain satisfying Corol-
laries 2.2 and 2.3 with € = i. Let u denote the Green'’s function with péle at infinity,the
harmonic measure with péle at infinity, and= jl—jj the corresponding Poisson kernel. Assume
thatlogh € VMO(09), then for all.X € Q we have

(33) Vu(x)| < / hQ) do™(Q).

o0

THEOREM 3.2.— Let Q ¢ R**! be aé-Reifenberg flat chord arc domain satisfying Co-
rollary 2.3 with e = 1. Let G(A4,—) denote the Green's function with pole at and

ka = % the corresponding Poisson kernel. Assume thatt, € VMO(09), then for all
XeQn{Y eR": §(Y) < 6(A)/8} we have

(3.4) |VG(A,X)| < /kA(Q) dw™ +05(i)n (%)ZMA(B(QX,MA))),
o
for anyQx € 09 such thatX € B(Qx,d(A)/8) N Q.

LEMMA 3.1.—LetX, € Q. Letu,w andh as above, and assume thiat L (do). Then for
w a.e.qQ € 99, Vu(X) converges non-tangentially 9(Q), and F' € L{. _(dw™~).

loc

Proof. —Let/ = min{1,/}. Let K C R""! be a compact set, let
K ={X eR"": dist(X,K) <l}.

Let Q € K N9Q, and X € I'(Q) with §(X) < £. HereI'(Q) denotes a nontangential access
region. By a standard estimate for non-negative harmonic functions we have

u(X)

(X))’

(3.5) |Vu(X)|<C

Furthermore by Lemma 4.8 in [14] therels> 1 so that for every) € K N 9%, X € I'(Q) with
I(X) <L, ifY e Q\B(Q,20(X))

w¥ (B(Q,0(X)))

SX)Gx,y) <

(3.6) c'<

SinceA € Q\B(Q,246(X)) for X € Q with §(X) < ¢, (3.6) yields

w!(B(Q,4(X)))
3(X)"—1G(X, A)

(3.7) c < <C.
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By the construction described in the proof of Lemma 3.7 in [18], we know that leftingend
to infinity for @ € K N 9Q andX € T'(Q), (3.6) yields

(3.8) c'< % <C.

Combining (3.5), (3.7) and (3.8) we have that fre T'(Q) with §(X) </,

u(X) 1
3.9 X)| < < hdo,
(3.9 |Vu( )‘ Oé(X) O&(X)" o
BUNB(Q,6(X))
so that ifé(X) <1
(3.10) sup |Vu(X)| < CM(h)(Q),
Xer(Q)
5(X)<!
where
1
(3.11) M;(h)(Q)= sup — hdo.
o<r<t T
B(Q,r)NoQ
Since
(3.12) /[Ml(h)]gdogC/h2d0<oo,
K K

we see that the truncated non-tangential maximal functioWofis in L (do) and hence in
L{ .(dw*+). By Fatou's theorem for NTA domains (see [14] Theorem 5.8 and Lemma 8.3 as

well as Lemma 3.3 in Appendix A) we know th&tu converges non-tangentially t, and
FelLl (dw*). O

loc

LEMMA 3.2.— Let F be the non-tangential limit o¥«. Then sinceh € LZ (do), for H™
a.e.Q € 90 we have that

(3.13) F(Q)=h(Q)T (Q).
The proof of this lemma appears in Sections A.1 and A.2 of Appendix A.

LEMMA 3.3.-LetQ c R™*! be an unboundedReifenberg flat chord arc domain satisfying
Corollaries2.2and2.3with e = 1. Assume thabg h € VMO(02), and that) € 9Q. Fix R > 1
large and letpr € C° (R 1), op =1 for | X| < R, sptyr C B(0,2R), 0 < pr < 1 and
|Vor| < C/R, |Apr| < C/R? For X € Q define

(3.14) wr(X) = / G(X,Y)A[pr(Y)Vu(Y)] Y,
Q

wherewu denotes the Green’s function 8fwith pole atco. Thenwg|oq =0, wr € C*(N2) for
somex € (0, 1), and we have the following estimates fre

§(X)3/4

(315)  |wr(X)|<C= 55

R
for | X| < —.
X[ <5
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(X)
RY

6(X)> TL(B(0,R))

2 3
(3.16) \wR(X)KCR"[w(Bg:R))} (5 )M(B(l for | X| > 4R.

0,1X1))

R
for — < |X| <4R.
R R" 2 X1 R

Proof. —Let V(X)) = Vu(X) for X € Q. ThenA(¢prV) = (Apr)V + 2Vyppr - VV so that

(3.17) \wﬂXﬂ<C<

(3.18) wr(X) =wr(X) +wh(X)

with

(3.19) wh(X) = / G(X,Y)Apr(Y)V(Y)dY,
Q

and

(3.20) w;g(x)zz/G(X, Y)Ver(Y) - VV(Y)dY.
Q

Note that

(3.21) V()| <C% and |VV(Y)| <c;((?),

alsospt Vo, spt Apr C{R< |Y| < 2R}. Let

u(¥)\?
3.22 Ip= —Z2 ] 4Y.
(3.22) . &YQ
{R<|Y|<2R}NQ
CLAIM . —If Q is as above then
u2(A
(3.23) Ir <CR™! (RjR).

In fact note that by Harnack’s principle and our assumption thas chosen so that
Corollary 2.2 holds foe = 1 we have that fot” € 2N B(0,2R)\B(0, R)

(3.24) u(Y) < O(%) Zu(AzR).
Thus
(3.25) Ir < Cu?(Asg) {# / %} .

{R<|Y|<2R}NQ

We want to show that the term in brackets is bounded abovgﬁk}i/"“. Scaling shows that it
is enough to prove this faR = 1, i.e., we have to show that fét as in Corollaries 2.2 and 2.3

dY
3.26 —— < C.
320 [ s
{1<]Y|<2}nQ
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Letj >0,and
(3.27) A; =N {|Y| <2:9277 < 5(Y) < 2*j+1}'

Coverd2 N B(0,2) by balls{B(Q;,1/29~1)}¥ | centered i) and so thatQ; — Q| > 1/27
for i # 1. Sinced) is Ahlfors regular, it is straightforward tha¥ < C2/", whereC depends
on n and on the Ahlfors regularity constant oK). If Y € A; there existsX € 90Q so
that | X — Y| < 1/297! andQ; € 99 so that|Q; — Y| < 1/2772. On the other hand since
5(Y)>1/27,1Q; — Y| >1/27. Thus{B(Q;,1/2 =)\ B(Q;, 1/2J)}]\L1 coversA; and

o ) 1 n+1 1 n+1 )
n . nj — [ = -7
(3.28) HUH(A;) < Co2 {(2) (2j) } <2,

which implies that
2
(3.29) / 5Y1/2 Z/ 1/2\0 22 i2<c,
{1<|Y|<2}nQ

which proves the claim.
Casel. Let|X| < £. Then

(3.30) lwh(X)] < % / G(X,Y)

{R<|Y|<2R}N

Let As = A(0,5/2);i.e.,,S/M < |As| < S andd(As) > S/M (see Definition 3.1 of NTA
domain in [18]). Then fol” € 2N B(0,2R)\ B(0, R) we have, using Corollary 2.3, that

(3.31) G(X,Y)<C [%} G(AR,Y).

Moreover by the Comparison Principle (Lemma 4.10 in [14]) we have that for
Ye{R<|Y|<2R}

G(AR,Y) u(Y)
(3-32) G(ARr, A2r) S CU(AzR)7
hence
(3.33) G(AR,Y) < CG(Ag, A2gr) ul) < ¢__ul¥)

U(AQR) = Rl U(AQR)’
and combining (3.30), (3.33), (3.23), (3.8), (3.2), and using the fact’?hatl we have that

C (8(X)\T 1 W2(Y)
""IQE“(X)Kﬁ(T) ] e
{R<|Y|<2R}NQ
(3.34) ( (X) ) A2R

<C<6(?) (1223)<C<5(X)>Z w(B(0,2R))

R
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(3.35) <C(6<§))Z‘;’E§§8’§§§ < c(é(g))ZRiw(B(o,n).
Hence for| X | < &

3/4
(3.36) WA (X)| < c%.

We now estimate the term}, (X). Using (3.21), (3.31) and (3.33) we obtain

Wk (X)| < / G(X., V)| Apr(Y)| [V(Y)]aY,

Q
S(X)\T 1 u(Y)
<) w Gn 5y
QN{R<|Y|<2R}
1 5(X) 3 w(Y)? dy
(3.37) <Cpom (T 3(Y) u(Azr)

QN{R<|Y|<2R}
Since forY € Q with R < |Y| < 2R, §(Y) < 2R, (3.37) becomes

(3.39) ’w}“(X)K%u(;R)(%)% / (gg:i)zdl/

QN{R<|Y|<2R}
3 3
U(AQR) 5(X) 4 6(X)Z
SC——F—|—F~) <C—F,
R ( R 3
because of (3.23) and (3.34). This concludes the proof of (3.15).
Case2. Let| X| > 4R. Assume tha?’ R < | X | < 2/ "1 R for somej > 2. Let A; = A(0,27R)

be a non-tangential point férat radius2’ R. ForY € Q with R < |Y| < 2R, by Corollary 2.3
the comparison principle and (3.8) we have

2

5(X)\* u(Y) SOONE 1 )
< C( DR ) G(AjaAj—l)m < C( R ) @ TR u(Ajil)

SOONE u(v) SO\ u(Y)
(3.39) < C< R > w(B(0,271R)) < O( 2R ) w(B(0,27R))

Thus using (3.23), the fact thatis a doubling measure, and (3.8) we have

lwh(X)] < % / G(X, Y)% dy
{R<|Y|<2R}NQ
C/8(X)\ T 1 u?(Y)
S E< 2R > w(B(0,27R)) / sy

{R<|Y|<2R}NQ

ClexX)\T I
<E<2JR> SB0.77)
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CR™2(Ag) (§(X)\ 1 1
S (m) S(B(0,1X]))

gCR”2<w(iioif%)))2<5|g)((|)>Zw(B(01,|X|))

“Bé?;R”T(iS‘Z?)%&m»-

In order to finish the proof of (3.16) we need to estimajg X ) for | X | > 4R. By (3.21), (3.39)
and the computation in (3.40) we obtain

) C (§(X)\1 1 u(Y)?
ROl < 2 9k w(B(0,27R)) sy
QN{R<|Y|<2R}

(3.40) <CR" [

Ir

_C (6(X) 1

R 2J'R> w(B(0,27R))

”(BESZR))R(;%))%L‘J(B(&|X|>>'

Inequality (3.16) is proved by combining (3.40) and (3.41).

Case3. Letl R < |X| < 4R.Note tha¥(X) < 4R. LetX € 9 be such thai(X) = | X — X|,
which implies that X | < 8R. Note that ifY” € B(0,2R) thenY € B(X;10R). We now look at

(3.41) < CR" [

C u(Y)
2(X)| <= / X, Y)——2dY
|wR( )| R G( ’ )§(Y)2
QN{RBR<|Y|<2R}INB(X,10R)
C u(Y)
<= XY dy
R G( )52(Y)
QN{R<|Y|<2R}NB(X,6(X)/2)
C u(Y)
—= GX,Y dy
QN{R<|Y|<2R}IN(B(X,26(X)\B(X,5(X)/2)))
C u(Y)
3.42 —= XY dy.
(3.42) v / GX.Y) 53
QN{R<|Y|<2R}IN(B(X,10R)\B(X,25(X)))
ForY e QN{R< Y| <2R}NB(X,cd(X)/2),
C u(Y) u(X)
. S Vw7 < ;
(3.43) G(X,Y) X vy and VaE C(S(X)Q
by Harnack’s principle. Thus
u(Y)
G(X,Y dy
( ’ )52(Y)
QN{R<|Y|<2R}NB(X,5(X)/2)
u(X) dy
. < 7 < .
(3.44) Cd(X)2 Xy Cu(X)

QN{R<|Y|<2R}NB(X,6(X)/2)
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Fig. 1.

IfY eQn{R<|Y|<2R}N[B(X,26(X))\B(X,5(X)/2)]

u(Y)
u(Z)

u(Y) 1

(3.45) G(X,Y)<C 00 ST

G(X,Z)<C

by the Comparison Principle, f&f € 9B(X,§(X)/2) (see Fig. 1). Thus (3.45) yields

u(Y)
XY dY
QN{R<|Y|<2R}N(B(X,26(X))\B(X,5(X)/2))
1 u?(Y)
3.46 <(C—r—eme— dy.
(3.49) o | oy

QNB(X,25(X))

A similar argument to the one used to estimpte(see (3.23)) ensures that

u?(Y u?(X 1
(3.47) / —5221/; dY < 052EX;5”* (X).

QNB(X,25(X))

Thus combining (3.46) and (3.47) we obtain

(3.48) / )Y gy < cu(x).

QN{R<|Y|<2R}IN(B(X,26(X)\B(X,5(X)/2))

If Y e Qn{R<|Y|<2R} N (B(X,10R)\B(X,20(X))) there existsj € {1,...,jo} SO
that2/§(X) < |X — Y| < 20+1§(X) wherej, is such thaR?§(X) > 10R > 200~ 1§(X). Let

Y; = A(X,276(X)) be a non-tangential point with respect 1 at radius2/4(X). Then for

Y € B(X,27H15(X))\B(X,215(X)) by the Comparison Principle, Lemma 2.1 and (3.8) we
have

u(Y) 6(X) i u(¥)
co L u(Y) 2/ Dg(x) !
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u(Y)
(27)Fw(B(X,298(X)))
Hence using (3.8), Harnack’s principle and an argument similar to the one used to prove (3.23)
we have that

(3.49)

u(Y)
X, Y ay
/ GX.Y) 5
QN{R<|Y|<2R}IN(B(X,10R)\B(X,25(X)))
Jo 1
<Oy —F———
o (29)5w(B(X,276(X)))
u?(Y)
X / 2(Y) dY
QN{R<|Y|<2R}N{206(X)<|X —Y|<20+16(X)}
Jo 2
Ye) PP —— / w ) gy
o (29)7w(B(X,276(X))) 32(Y)

B(X,2i+15(X))NQ

& G+1 n+1 “2(Yj+1)
Z (29) 3 X 276( ) (2 ( )) (2115(X))?

4

Jo )2(298( X))~ Jo w(B(X,296(X)))
Z 27% (X 216(X))) <Oz;(w‘)% RIo(X)—t

=1
Sincelogh € VMO( ), by (3.2), and using the fact thatis doubling in the case whege= jj
we have that

(3.50)

w(B(X,275(X))) <C<215(X)>"%
w(B(X,10R)) R '
Thus combining (3.50) and (3.51) we obtain

(3.51)

u(Y)
/A ) G(X,Y) 27 dy
QN{R<|Y|<2R}N(B(X,10R)\B(X,26(X)))
LA 1 (295(X))n—%
<Cw(B(X 10R));(2j)% R (210(X))n1
o & :w(B(X,10R)) _ 6(X)F L
< o ;5()0 it o éw(B(X,loR));(W)
§(X)¥ i o OX)F R \?
<C s w(B(X,10R))(2"0)s < C o w(B(X,10R)) (W)
(3.52) gc‘s(ggZR%w(B()?,mR)).

Sincew is a doubling measure amﬂ’| <8R then
w(B(X,10R)) <w(B(0,18R)) < Cw(B(0, R)).
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Combining this remark, (3.42), (3.44), (3.48) and (3.52) we obtain that

(3.53) w2 (X)| < %U(X) +C<6(§))m(3}({% R))

By the Harnack principle, Corollary 2.2 and (3.8), fire B(0,4R) we have

(3.54) u(X) <c<@)%u<m <c<5<§>>%”(i§&f )

Combining (3.53) and (3.54) we obtain

(3.55) w3 (X)| < 0(5(?) ’ “’(Bg: R),
We now look atw, (X)),
C u(Y
lwr(X)] < VP / G(X, Y)é((yg dy
QN{R<|Y|<2R}NB(X,10R)
(3.56) < % / G(X,Y) g‘((yy))g dy.

QN{R<|Y|<2R}NB(X,10R)
Combining (3.42), (3.44), (3.48), (3.52) and (3.54) we obtain that

6<X>)%w<B<O,R>>
R R ’

(3.57) lwr(X)] < O(

which concludes the proof of (3.17), and that of Lemma 3.3. In fact note that (3.15), (3.16)

and (3.17) ensure thatr vanishes continuously at the boundary, and thate C*(Q2) for
ae(0,2). O

Proof of Theorem 3.1. Recall thatQ2 is an unbounded-Reifenberg flat chord arc domain,

satisfying Corollaries 2.2 and 2.3 with= %. Assume thab € 99. Let R > 1, and using the

notation introduced in Lemma 3.3 define f&ire (2,
hR(X) = QDR(X)VU(X) —wR(X).
Note thathr is a harmonic function if2 satisfyinghr = 0 on 9Q\ B(0,2R). In fact (3.14)
ensures that
Awp = AlprVul.

The proof of Lemma 3.1 ensures that(or(X)Vu(X)) € L(dw*+) for every X, € Q.
Lemma 3.3 guarantees tha, is bounded, thusV(wg) € L (dw*~) for every X, € Q. Thus
N(hg) € L*(dw™~) for every X, € Q and Lemma 3.3 in Appendix A ensures that

(3.58) hR(X):/apR(Q)F(Q)de for X € Q.
o0
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Therefore forX € QN B(0, %) using (3.15) and Lemma 3.2 we have

3/4
(3.59) |Vu(X)| < |hr(X)|+ [wr(X)| < /h(Q) dw™(Q) + C%.
o0

Letting R — oo we obtain that forX € Q

(3.60) Vu(X)| < / hQ) e (Q),

[219]

which proves Theorem 3.1.0
Proof of Theorem 3.2. ket )y € 9. Letyp € C°(B(Qo,0(A)/4)), p =1 for
|X — Qo| <5(A)/8,

0<p <1, |V <C/6(A) and|Ayp| < C/5(A)%. In particularp = 0 in B(A,5(A)/4). For
X € Q define

(3.61) wo(X) = /G(X7 Y)A[p(Y)VG(A,Y)] dY.
Q

As in Lemma 3.3 we have that|sq =0, wo € C*(2), and

(3.62) |wo(X)| < ﬁ(%f forXeQﬂB(Qo,é(f)).
In factwo(X) = w{(X) + w3 (X) where
(3.63) wi(X) = / G(X,Y)ApVG(A,Y)dY
o

and
(3.64) wi(X) = /G(X, Y)VeV(VG(AY))dY.

Note that )
(3.65) |[VG(A,Y)| < CG((Sé’/)Y) and |V*G(4,Y)| < OC’;((AT’)?,

alsospt Vo, spt Ap C B(Qo,2R)\B(Qo, R) whereR =§(A)/8. For
Corollary 2.3 and the comparison principle ensure that
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5(X))% G(A,Y)

G(X,Y)<C<M>ZG(A2R7Y)<CG(A23,AR)( %) A das]

(3.66) ¢ (5(X))% G(AY)

<
= Rn—1 R G(A,AQR)’

where A;g = A(Qo, R); i.e. R/M < |Asr — Qo| < 2R and §(A2r) = R/M and similarly
for Ar. Therefore by Harnack’s principle and the fact tldais chosen so thaf) satisfies
Corollary 2.3 withe =  we have

c G(A,Y)? S0\
w3 (0| < 7 [ G )(R) s
QN{R<|Y -Qo|<2R}
C /6(X)\1 1 g

QN{R<|Y|—Qo|<2R}

The computation done to prove (3.23) shows that

1 dy

- <CR" L.
R (V)3

(3.68)

wlw
(o9

QN{R<|Y —Qo|<2R}

Combining (3.67), (3.68) and (3.7) we have

6<X>) 1G4, Asr)

R = C(‘S(X))%wA(B(QoJR))

|5 ()] <C( = i

N

C (6(X)\T
As similar computation shows that the same inequality holds|fg X )|, and hence for
X eQnB(Qo,6(A)/4)

C (8(X)\1
(3.70) lwo(X)| < R—(%) WA (B(Qo.4R)),
which yields (3.62).
A similar argument as the one presented in the proof of Theorem 3.1 shows that for any
Qo € 9Q and everyX € QN B(Qo,(A)/8)

a7 [V6uX)|< [@d @+ 55 (50)) o (B@us)

o0

which proves (3.4). O

4. Blow up argument

In this section, which is the core of the paper, we describe a general construction of blow-up
sequences for Reifenberg flat chord arc domains whose Poisson kernels have logarithm in VMO.

4€ SERIE— TOME 36 — 2003 -N° 3



REIFENBERG FLAT CHORD ARC DOMAINS 347

The main result is that any such sequence has a subsequence whose limit satisfies the hypothesis
of Theorem 2.2. Lef) C R™*! be aj-Reifenberg flat chord arc domain, wigh> 0 small enough
so that the conclusion of Corollary 2.3 holds (and that of Corollary 2.2 in the unbounded case)
fore=1.

Here4againu denotes either the Green function with pole A&tor with pole at infinity,
h denotes the corresponding Poisson kernel (see (2.27))dangd hdo. We assume that
logh € VMO(99). Let Q; € 99, and assumé); — Q. € 9 asi — oo. Without loss of
generality we may assume th@., = 0. Let {r;};>1 be a sequence of positive numbers so

thatlim;_. ., 7; = 0. Consider the domains

(4.1) Q= %(Q —Q;) with9Q; = %(asz — Q).

K3

Consider also the functiong on 2; defined by

(oL uriZ + Qi)
(4.2) ui(Z) = oo hdo To@ahds

Let Qf = Q; if u is the Green’s function with pole at infinity arfef = Qi\{A;—iQi} if u is the
Green'’s function with pole atl. Then

(4.3) Au; =0 on Q: C Q;, Ui|aQi =0
and
(4.4) dw;(Q) =h;(Q)do;(Q) forH"-a.e.Q € 99;.

Hereo; = H™ L 09);, w; denotes the harmonic measure(tfeither with pole at infinity or at
%, depending on whether is the Green’s function with pole at infinity or with pole At
Furthermore the corresponding Poisson ketpedatisfies

_ h(rQ+ Q)

4.5 h; = .
(45) (Q J;B(Qiﬂ“i)hdo

Sincelog h € VMO, by including the termf s, .y do in the denominator of the function
defined in (4.2) we “remove the singularity” of the Poisson kernel of the limit domain. This is
the “correct” type of blow up in the sense that it allows us to connect the geometry of the limit
domain to the analytic properties of its Green’s function with pole at infinity.

THEOREM 4.1. —There exists a subsequer(@éich we relabédlsatisfying

(4.6) Q; — Q4 in the Hausdorff distance sense, uniformly on compact sets,

4.7) 09); — 0Q in the Hausdorff distance sense uniformly on compact sets,

where €, is an unboundedié-Reifenberg flat chord arc domain. Moreover there exists
Use € C(Q) such that

(4.8) u; — Uso Uniformly on compact sets
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and
Atg =0 inQq,
(4.9 Uso =0 in 0Q,
Uso >0 in Q.
Furthermore

(4.10) Wi — Weo,

weakly as Radon measures. Moreowgs is the harmonic measure 6f,, with pole at infinity
(corresponding taiy).

Proof. —Since for eacti > 1, B(0,1) N §); # ) and0 € 952;, given a compact sek C R"+!,
there exists a subsequer{@&: such thaf2, N K andoQ; N K converge in the Hausdorff distance
sense. Taking an exhaustion®f*+! by compact sets, we can insure that there exists another
subsequencéi, } such that;, andof;, converge in the Hausdorff distance sense, uniformly
on compact sets. Hence modulo relabeling the subsequence we have that

(4.12) Q; — Q. in the Hausdorff distance sense uniformly on compact sets,
and
(4.12) 09); — Y in the Hausdorff distance sense uniformly on compact sets.

Note that if £ ¢ R**! is a Borel set

= [ 1O () — A rQ+ Q) doi(Q)
J(E) E/ hi(Q) doi(Q) L

_ " riE4+Q; hQ)do(Q) (rE+ Qi)

w
(4.13) =r; "o(B(Qi,1i)) -
Fa0mh@Q do(@ B B Gar)
Sincedf is Ahlfors regular, there exists > 1 so that
(4.14) @B Q) gy < @B+ G

w(B(Qi,7i)) T w(B(Qiyr))

Sincew is a doubling measure for each compact&et: R"*, sup,, w;(K) < Ck. Hence
there exists a subsequence (which we relabel again) sadthat w,, and u; — pe Where
pi(E) = % Note thatC' e < woo < Clise Which ensures thatpt jise = spt woo,

wherespt denotes the support of a measure. Our immediate goal is to shoWthat 0., to
do this we first need to prove th&t,, = sptw... Itis straightforward to show thapt oo C Yo

(see proof of Lemma 2.1in[18]). Now assume tha& X, there existX; = %(ZZ- —Q;) €09,

with Z; € 9Q so thatX; — X. Forr € (0, 1) there exist3, > 1 so that for; 212'0 | X - Xi| <5

and|Z; — Q;| < Mr;, whereM = | X| + 1. Then fori > i

W(B(r;X + Qq;7r3)) < w(B(Zs, 5r4))
w(B(Qi,7i)) ~ w(B(Qi, 1))
w(B(Zi, 573))

~ w(B(Zi,ri(M +1)))

Hi (B(Xv T)) =

(4.15) >C(r,M),
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becausev is doubling. From (4.15) we deduce thAt € spt u.., Which combined with the
remarks above ensures that, = sptw,. In order to prove thad2,, = X, let

X €000 = Qo NQE,.

Givene > 0 there existt” € Q. N B(X,¢e) andY’ € QS N B(X, ¢). By definition

1
V' = lim —(Y/ — Q)

. [
1—00 T

for someY; € Q¢. Moreover there exists a sequenges R"*! such that

1
Y = lim —(Y; — Qi).
1—00 Ty
Modulo taking a subsequence we may assume Yhat 2. A simple connectivity argument
shows that for each > 1 there existsP, € 9Q N [Y;,Y/], where[Y;,Y/] denotes the segment
joiningY; to Y. Let P, = (1 —t;) - -V +t L -Y/ for somet; € (0,1) then the sequence

1 1 1

—(P=Qi) =1 —t;)—(Yi = Qi) +t; — (Y] — Q)

T T T
is bounded, thus there exists a subsequéfdesuch tha% (P, —Qi.) — Z: € Y. Moreover
since ’

1 1 |V, - Y/
— (P = Qi) — —(Yi. = Qi) < :
Tis Tis T

=

lettingi. — oo we have that
Y —Z|<|Y -Y'| and |X —Z|<|X-Y|+|Y -Y'|<3¢

Summarizing we have proved that giv&he 02, and givene > 0 there existsZ € ¥, such
that|X — Z| < e. HenceX € Yo, = sptwe = SPtwee = Yoo, 1.€., 000 C Y. In order to
prove the other inclusion we use the fact that siftds aj-Reifenberg flat domain thef is an
NTA domain.

Let X € X, there exists a sequendg € 952 such that— (X;—Q;)— X. Givenp > 0 since
both 2 and )¢ satisfy the corkscrew condition forlarge enough (so thatp < R) there exist
A; € QandAj € Q° such that

B(A %)CQ and |Ai—Xi|<pT‘i,

B(A;,%)CQC, and |A] — X;| < pri,
which implies that

B<Ai_Qi P>CQ“ ‘Ai_Qi_Xi_Qi

T T

T ’M
(A= Qi p
dist Q) = —;
ls< 2, > 2
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r_ 0. r_ 0. 0.
B<Ai Qz,ﬁ)ca‘;, ‘AZ O _XQie,
T M T T
(4.17) A0
. ; — Wi P
dist | — Q==
Modulo passing to a subsequence we may assume that
A — Qi Al — Qi
7Q_>Aoo(p)eﬂoo, and ZiQ—mlgo(p).
T T

Leti — oo in (4.16) and (4.17) we obtain

(4.18) B(Aoow,ﬁ)cnm, |Anelp) - X| <.
and

~ p
(4.19) AL (p) = X[ <p, dist(AL(p), Do) = 577

(4.18) and (4.19) prove that there exidt§ > 1 such that givenX € X, andp > 0 there exist
A (p) € Qoo and AL (p) € N, such that

(4.20) |Asc(p) = X[ <p,  |AL(p) — X| <0,
and

P / P c
(4.21) B(Axh ) <o Bkl L) con

Letting p tend to 0, and using (4.21) we conclude that 02, hencedQ, = Y.

The fact thato2, is a4d-Reifenberg flat set is a direct consequence of the factiflas a
5-Reifenberg flat set and that the quan@ify, r) is scale invariant. Lekl ¢ R"*! be a compact
set, since&)f? is ad-Reifenberg flat set there exisis, so that for every

Qe {X eR™! dist(X,K)<1}NoQ

andr € (0, Rk), (Q,r) <9, i.e., givens > 0 there exists an-planeL containing so that
1

(4.22) ~D[02N B(Q,r); L(Q,r) N B(Q,r)] <5 +e.
r

Let P € K N 09, there exists a sequen¢®; } € 9 so thatlim; %(Pi — Q) =P, note
that since by assumptiditm; ... Q; = 0 thenlim;_.. P; = 0. '

Let r € (0, Rx) be fixed. Sinced; — 090+ in the Hausdorff distance sense there exists
ro = 1 sothatfori > ig andr’ € ((1 — &)r,7)

(4.23) D [BQi N B(P,r"); 000 N B(P, r’)] <er,
and if X; = L(P, — Qy), | Xi — P| <er. Fori > ig let A; = L(P;,ryr) — P; + P then

D[99 N B(P,7); A; N B(P,r)] < D[0Qs N B(P,r);0Q; N B(P,r)]
(4.24) + D[0Q; N B(P,r),A; N B(P,r)].
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Note that (4.23) implies that
(4.25) D[0Q0 N B(P,7);00; N B(P,r)| <er.

Moreover by our choice ak; since

1D (09 N B(X;,7); A; — P+ X; N B(X;,7)]
,
~1p [0Q N B(Pyrir); L(P;, mir) N B(Py,7iv)]
rir

we have, as in the proof of Theorem 2.2 in [18], that

6QiﬂB(P,T‘) C(?QiﬂB(Xi,r(l—i—a))
C (AN B(Xi,r(1+¢));20r(1+e) + 2¢er)

(4.26) C (AiNB(P,r);20r(1 +¢€) + b, ),
and
(4.27) A; N B(P,r) C (0% N B(P,7);20r + 4er).

Hence combining (4.26) and (4.27) we have
(4.28) D[0Q; N B(P,r); Ai N B(P,r)] < 467 + 10er-

Combining (4.24), (4.25) and (4.28) we obtain

(4.29) Ip (09000 N B(P,r); A; N B(P,r)] <46 + 11e.
T

Thus

(4.30) Boa.. (P,r) < 44.

The fact thato), is a46-Reifenberg set combined with (4.21) ensures that satisfies the
separation property and therefafk,, is a 46-Reifenberg flat domain. Sincé€2 is Ahlfors
regular, and the measure theoretic boundar§2 afoincides with its topological boundary, we
have that for eaci® > 0

(4.31) sup o; (B(O, R)) = sup w

i>1 i>1 r;

<C.

The compactness theorem for BV functions (see [7, 85.2.3]), guarantees that (modulo passing to a
subsequence),, — x in Li, . (R"**) whereF is a set of locally finite perimeter. We claim that

E = Q.. First note that sincéQ,, hasH™*! measure zero, we may assume that 9Q, = 0.

We can also assume that all points Bfare density points foxg. Let X € int QS_, there

existsr > 0 so thatB(X,r) C Q<. SinceQ; — Q. in the Hausdorff distance sense there is

io > 1 so that fori > io, B(X,%) N Q; =0, therefore" ™ (B(X,5) N E) =0 thus X ¢ E.

HenceFE C Q. Let X € int Q. there exists: > 0, B(X,r) C Qs, Sinced); — 9 in the
Hausdorff distance there exisig> 1 so that fori > io; B(X, %) N 0Q; = 0. Let P; € 9€; so

that p; = | X — P;| = dist(X,09;) > . Since(); satisfies the separation property then either
B(X,7) cQ;orB(X,}) C Q. SinceX € Q, we conclude that forlarge B(X, 7) C ©; and
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therefore forp < Z,
H" T (B(X,p) N) =wpp1p™ T = H"H(B(X,p) N E).

Thus X is a density point for z, which implies that € E. We have shown thata, — xa.,
in LL _(R™*1) and that., is a set of locally finite perimeter.

Once again sinc@ is a4d-Reifenberg flat domain its measure theoretic boundary coincides
with its topological boundary (se Remark 4.2 in [18]). This fact combined with the lower semi-
continuity of the variation measure (see [7, 85.2.1]) ensures thaf @02, andr > 0

B(r; X i3 TT4
(4.32) UOO(B(X,T))<1iminfai(B(X’r))ghminfo’( (r J;Q r ))’
71— 00 71— 00 Ti

whereo,, = H" L 0. SinceX € 0, there existsX; € 9; so thatlim;_,., X; = X and
. X; + Q; = P; € 0Q. Thus sinceé)? is Ahlfors regular

O'(B(T‘iX'i‘Qi,T'Ti)) < U(B(H,Tri+7‘i|X—Xi|))

~X

(4.33) <SC(r+1X-X))".

n n
i T

Combining (4.32) and (4.33) we have that

(4.34) 0so (B(X,7)) < Cr™.

Since Q. is an unboundedd-Reifenberg flat domain Remark 4.1 in [18] ensures that for
X €00y andr >0

(4.35) Ooo (B(X,7)) = (14 40) twyr™.

Thereforef), is an unboundeds-Reifenberg flat chord arc domain.

We now prove (4.8), (4.9) and (4.10). The uniqueness of the harmonic measure with finite pole
as well as the fact that the composition of a translation and a dilation with a harmonic function
is still a harmonic function allows to prove that fpre C2°(R"*1) so thatA; = 4=9 ¢ spt .

(4.36) / ¢<P ;iQi>de(P)_ / ©(P) dw” (riP + Q;) = / AQ(Z)Gi(A, Z) dZ.
Q;

o0 Q;

HereG,(A;, —) denotes the Green'’s function Qf with pole atA;. Combining (4.36) and (4.13)
we obtain

dw? (riP + Q) . Gi(Ai, Z)
(4.37) [ e ABQL) [ 2o Bo.1) "~

3

From (4.4), (4.13) and (4.37) we deduce

i
08 Q;

In particular

_oB@ur) KM
(4.39) M DR BO)
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wherekiAi denotes the Poisson kernel@f with pole atA;. Sincef?, is an NTA domain Lemma
4.8 in [14] guarantees that folarge enough (sel; is far enough fromB(0, 1)) we have

(4.40) G;(Ai, Ai(0,1)) ~wi' (B(0,1)),

whereA; (0, 1) denotes a non-tangential point faf at 0 and radiudl.
Sincedf? is Ahlfors regular, the Harnack principle combined with (4.40) asserts the sequence
{#i}i>1 of non-negative harmonic functions

O'(B(Qi, T’L)) Gl(Aiv Z)

(4.41) 0i(2) = T T R

defined forZ € B(0;]4;|) N Q; is uniformly bounded on compact sets. In fact if wedet= 0

in ¢, by our choice of > 0, Corollary 2.3 ensures tha; } is uniformly bounded on compact
sets in theC®/4 norm. Moreove; (M) > O~ By the Arzela—Ascoli theorem there
exists a subsequence such thatonverges to a limit.o, uniformly on compact sets. Moreover
Aus, =01n Q4 becausé€); — Q... Sincep; = 0 onl§ andQ§ — QS in the Hausdorff distance
senseu,, = 0 on 99,. Thusu,, satisfies (4.9). Letting — oo in (4.38) we conclude that for
peCx(R™)

(4.42) / pdweo = / oo (X) Ap(X).

0o Qoo

Now note that ifu(X) = G(A4, X) then by the uniqueness of the Green’s function with finite
pole, forn > 2
(4.43) GArZ+Q;)= %Gi(Ai, Z).
i

Therefore ifu denotes the Green’s function with poletwe have that:; = ¢; which proves
(4.8), (4.9) and (4.10) in this case.

If 2 is an unbounded-Reifenberg flat chord arc domain andienotes the Green'’s function
of Q with pole at infinity, Lemma 4.8 in [14] combined with the construction described in the
proof of Lemma 3.7 in [18] we have that

w(B(Q4,14))
P u(A(Qi, i)

where A(Q;,r;) denotes a non-tangential point fof) at @; and radiusr;. The boundary
Harnack principle for NTA domains implies that féf € B(0, R) N Q;

(4.44) c < <C,

(4.45) u(ri X + Qi) < Cru(A(Q4,14)).

Thus combining (4.44), (4.45) and the fact thi#® is Ahlfors regular we obtain that for
X eB(0,R)NQ;

w(X) = u(ri X + Qi) u(A(Qi,73))
iX)= i Y B(Qir) hdU no (B(Qiri)) riw(B(Qi, 7))
,r,n 1
(4.46) CRmU(A(Qi,Ti)) < Ckg.
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Thus{u; } is uniformly bounded on compact setg( 4(2-1)=91) > 01, by the Arzela—Ascoli
theoremu; — u., uniformly on compact sets and satisfies (4.9).To showwzt;ats the harmonic
measure with pole ato associated ta.., note that forp € C°(R" 1)

1

(4.47) Ap(X)u(ri X + Qi) dX = — (X)) dw(r; X + Qy),

/ =
hence

o(B(Qirr) do(ri X +Q))

[ otmix v [0Sy

(4.48) = / (X)) dw;(X).
o0

Lettingi — oo, using the fact that; — uoo, wW; — Weo, i — Qoo aNdIN; — 9N, We conclude
that

(4.49) / Uoo(X)Ap(X)dX = / 0 dwoo. O
Qoo 0N oo
THEOREM 4.2. — If Q. € R**! andu, are as in Theorem.1, then

(4.50) sup ’Vuoo )‘ <1
ZEQso

The proof of Theorem 4.2 will be done by establishing a series of lemmas. Using the notation
above we have:

LEMMA 4.1.— Givene >0, A > 1 we have

(4.51) sup hi(Q) dos (Q) < CA™IHe)
1>1

“Taun{|Ql<A)

where( is a constant that depends erandn.

Proof. —This is a straightforward consequence of Corollary 2.4. Note that (4.13) combined
with (2.23) yields

a(B(Qi,ri)) w(B(Qs,Ari))

hi(Q)doi(Q) = oD " w(B(Qi,m))

09;n{|Q[<A}

14

becausé is Ahlfors regular. O

LEMMA 4.2.—LetZ € Q.. Givene > 0 there existgy > 1 so that

n= inf d(Z,00;) >

1210

and there existd/ = M (|Z|,n,e) > 0 such that
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(4.53) sup / hi(Q) dw?(Q) < e.
P pnn(iql>

Herewf denotes the harmonic measureqfwith pole atZ.

Proof. —Let us first remark that i € Q. thenZ € Q; for i large enough. In fact there exists
n >0 so thatB(Z,n) N QS, = 0. SinceQs — QF, then fori large enoughB(Z, 3) C ;. Let
P; € 99; so that

(4.54) n<mi<|z| and |P|<2|Z|.
Let N > 1 be a large constant, we first study
mQAAQ= [ mQIQdn@)
oQ;N{|Q—P;|>Nn;} o;N{|Q—P;|>Nn;}
=S / h(QF(Q)doi(Q)

T=0 90, {29 Nuj <| Pi— Q| <29+ Nip; }
> 3
<> ( / Q) d (@)
I=0 90,0 {29 Ny <| P —Q|<29+1 Ny }
1
2 2
(4.55) x ( / (k7(Q) dai@))
991 {29 Ny <| Pi— Q| <29+ N, }
Herek?Z (QQ) denotes the Poisson kernel@f with pole atZ, anddw? = kZ do;. We look at each

term separately. Note that sinfds ad-Reifenberg flat chord arc domain sdts. Moreover the
fact thatlog h € VMO(952) implies thaflog h; € VMO(05;). Also (3.1) ensures

1
2

hi (Q) dUi(Q))

8Qiﬂ{2jN7]1,<‘Pi—Q|<2j+1N7]i}

<( / Q) (@)

oN{|P; —Q|<2i+1Nn; }

C
<— = hi(Q) do;
23.”/2]\]"/27’]@/2 / (Q) o
va0N{|P,—Q|<2i+ 1Ny }
C
ST / (@) dox(Q)

89;n{|Q|<2i+1 Nn;4+2|Z|}
< C
= 2jn/2Nn/2m?l/2
< C
= 2jn/2Nn/2nn/2

(4.56) < O /2| g ki) NG ),

(274 N, + 2] 2]) "0

|Z|n(1+€') (2jN)n(1+a')
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where we have used (4.51) and (4.54) in several occasiongitiktead of: (¢' =¢’(¢)). The
constanC above depends am, ' and the Ahlfors regularity constant.

We now look at the second term.df € {2/ Nn; < |P, — Q| < 291y, N},

Q-2 >|Q - P|—|Pi— Z|>2/n;N —n; > 27" N.
Let p; > 0 be such tha2Nyp,; = 27~1; N whereNj is as in Lemma 2.3. Cover
0Q; N {27y N <|P, — Q| <27ty N}
by balls B(X;, p;), with
X, €00 n{2n;N <|P,— Q| <2y N}

so that| X; — Xy | > 2pJ if [ # k. Note that{B(Xl, 2)}>1 is a disjoint collection of balls. Note
thatZ € Q;\B(2Nyp;, X;) for eachl, thus smcéogh € VMO(99) by (2.33) we have that

(4.57) < f (kiZ)QdJi>%<O / k7 do

B(X1,p5) B(X1,p5)
and
(k7)* do
O;N{29n; N<|P;—Q|<29 1y N}
2
< dal <C / k? dUz‘)
ZI: / zl:m XlaP]))(
B(X1,p;) B(X1,p;)

2 C 2

(4.58) <C ( / kZ dai) <— ( / kZ dai) ,
Z TzXl + QzapJTZ)) Pj ;
B(X1,p5) B(X1,p5)

where we have also used the fact thét is Ahlfors regular. Sinces? is a doubling measure
(with uniform constants on, that only depend on the NTA character(®f andp; = QJ;IT’Z)N

(4.58) yields

(kiZ)Qdai> ’

0Q;N{27n; N<|P;—Q|<2i+1n; N'}

\n/zz / k7 do; < /22 / k7 do;

B(X1,p5) B(X:,%)

C
<< K do,
nn/2Nn/22jn/2
! 89N {20n; N— 2L <|P,—Q|<2i+1n; N+ 2L}

459) <—— ¢ 2 B(p,otyN+ Z\B(p, 2N -2
; 1 7
02 Nn/2gin/ 5 5
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Since|Z — P;| =n; >, andwX (B(P;, 271y, N + & )\B(H,2JmN £1)) is a non-negative
harmonic function irf2; wh|ch vanishes oB(F;, 27 nzN ) N 0%;, Corollaries 2.2 and 2.3
in Section 2 and Lemmas 4.9, 4.11 and 4.8 in [14] imply that

(k2" do;)

0N {29n; N<|P;—Q|<27+1n; N}

C |Z — B A(P;,27" ;i N) j+1 Pj
nn/2Nn/22jn/2< 2_7an > w; B\ P;,2 771N+g

c 1 JAP T N i
/2 Nn/225m/2 231/ N3/4 wj K (B(Pu?J 2771'1\/'))
C . n—1 o .
nn/?Nn/2+3/42j(n/2+3/4) (2J QniN) Gi(A(thJ 177iN),A(Pi,23 2771']\7))
C

(460) S nn/2Nn/2+3/42j(n/2+3/4)'

Combining (4.55), (4.56) and (4.60) we obtain

oo

hi(Q) dwf (Q) < Gy |z|"(HeIN=—Hne N (a=anely!
09:0{|Q~P;|>Nn;} =0
(4.61) <C(n,e o, |Z|) N~iHne 37 (a7 ey,
=0
Choosing:’ > 0 so thatne’ < 1, N > 4 large enough so that
C(n,e',n,|Z|)N N2Y 273 <¢ and M >2N|Z|
7=0
we conclude using (4.54) that foe> i, since|@Q| > M implies
then
(4.62) / hi(Q) dw?(Q) < / hidw? <e. O

oun{|Q|>M} auN{|Q—P;|>Nn;}

LEMMA 4.3.—LetZ € Q. Then

(4.63) lim sup / hidw? <1

09

Proof. —Lete > 0, choosei; > 1 and M as in Lemma 4.2, in particuld?| < & and (4.53)
holds. We concentrate on the quantf%ﬂB(O_M) h; dw?. We use the following result which

follows from the fact that) € 92 andlogh € VMO(99): givene’ > 0 there exists (') > 0
such that for- € (0,r(¢)) and@ € B(0,1) N 9N there exists7(Q, r) C B(Q,r) N oS such that
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o(B(Q,r) <(1+¢&)o(G(Q,r)) andforallP € G(Q,r)

(4.64) (1+¢)™? f hdo < h(P) < (1+¢€) f hdo.
B(Q.r) B(Q.r)

For further details see Lemma 5.6 in [18] and its proof. Although Lemma 5.6 in [18] is stated for
chord arc domains with small constant the reader can easily check that the argument presented
there only uses the fact that the domain is a Reifenberg flat chord arc domain. It is essentially a
consequence of the definition MO and the John—Nirenberg inequality.

Fore’ > 0 to be chosen depending erand M, leti; > ig so thatfori > 41, Mr; < r(e’), and
|QZ| <1 (reca” thatQZ — O) LetG; = TL(G(QZ,MTZ) — QZ), andFi = 891 n B(O,M)\GZ,
whereG(Q;, Mr;) C B(Q:, Mr;) N 0N satisfies

(4.65) o (B(Qi, Mr;)) < (1+¢")0(G(Qi, M)

and forallP € G(Q;, Mr;)

(4.66) hdo ~ h(P),
B(QfM"’i) c

Whereaw/ b means tha% < ¢ < 1+¢€'. We split the integral above i parts

3

a
b

(4.67) / hi dw? = / hi dw? + / h; dw? .
9Q;NB(0,M) Gi F;

ForQ € G;, :Q + Q; € G(Q;, Mr;), the definition ofh; and (4.66) yield

(4.68) hi(Q) = h(riQ + Q) N fB(Qiarnhdo
| Z IB@@irayhdo & f@rohdo’

which implies that

J;B(QuMm)hdU

vieohd
(4.69) /hi dw? < (1 +€’)wwz(6’i) <(1+¢)
fB(Qi;Ti)hdo.

oyhde
&, fB(Ql,l) a

becauses? is a probability measure. Note that

/ hdo}@ / hdo

B(Qi,ri) B(Qi,ri)NG(Qi,Mr;)
1 U(B(Qiﬂ‘i) ﬂG(Ql,MTl))
(4.70) > Tr e o BOrr) hdo.

B(Qi,Mr;)
Combining (4.69) and (4.70) we obtain

a(B(Qi,ri))
(B(Qi,mi) NG(Qi, MT4))’

(4.71) /hi dw? < (1+¢')?
ag
G;
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Moreover sinces? is Ahlfors regular

o(B(Qi,ri) NG(Qs, Mry)) =0 (B(Qi, 7)) — 0(B(Qi, mi)\G(Qi, Mry))
> 0(B(Qs,1i)) — o (B(Qi, Mri)\G(Qi, Mr;))
>0 (B(Qi,ri)) —€'o(B(Qi, Mr))
(4.72) >0(B(Qi,r:))(1—CM"").

Combining (4.71) and (4.72) we have

(4.73) /hi dw? < (1+¢")?(1- cMme)

G
We estimate now the second term in (4.67). Siice B(0, %), and(?; is ad-Reifenberg flat

chord arc domain, there exists= C(|Z|,n, M) so that if A; = A(0,16NoM) € §; is a non-
tangential point fof2;, at0 and radius 6 M Ny, with Ny as in Lemma 2.3 then by the boundary

Harnack principle
/hi dw? gc/hi dwiti :C/hikf‘i do;

F;
} }

4.74 <o [ h2do, k22 do,

( i :

F; F;
Note that
2
(475) /h2 dU — 'f'-_n fB(Qi-,IWTi)\G(Qi-,IWTi) h dU
’ ‘ (fB(Qini)hdo')2

F;

Sincelog h? € VMO(09) for i large enough
h?do
B(QT,MT‘»L)\G(Q“]\f’I‘?)

o) [ v

B(Qi,Mr;)
(4.76) <C(e)? / h? do
B(Q“MT'»L)
2
(4.77) <C\/§a(B(Qi,Mri))( f hda).
B(Q:,Mr;)

Combining (4.75), (4.76), (4.70) and (4.72) we obtain

[izdo < ova?B@uMn)) (Fr@uamhdo)”
’ i (fB(QmH)hdU)Q

F;

(4.78) <COVEM™(1—CM™e') %,
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provided thate’ < 1 and small enough. Sincg?; is a §-Reifenberg flat chord arc domain,
logh; € VMO(9%;), and ||logh;||.(0€%) ~ || log k||« (052), (2.32) is satisfied, and hence by
Lemma 2.3 we have that

(/ <k;‘i>2doz-)% S <k;‘i>2doz-)%

F; B(0,M)NoQ;
f kA dal->

B(0,M)No%;

< Coi (B(0,M)) 2w (B(0, M))

(4.79) <c<w)% <CM™ %,

n
T

=

< Coy(B(0,M))

Combining (4.74), (4.78) and (4.79) we obtain thaf'if/™s’ < % then
(4.80) / hidw? < Cur()}
F;
Inequalities (4.73) and (4.80) yield
(4.81) / hidw? < (1+€)2(1—CM )"+ Cu(e)7.
8Q;NB(0,M)

Choosinge’ > 0 s0 thatC)(¢')7 < £and(l+¢)*(1—-CM )"t <1+ 5, recalling our
choice of M, and combining (4.53) and (4.81) we obtain thatfor 0 there existg. > 1 so that

(4.82) sup / hidw? <1+ 2,
P>

therefore

(4.83) lim sup / hidw? <1. O
11— 00 697’

We are now ready to finish the proof of Theorem 4.2.

Proof of Theorem 4.2. ket Z € Q, let iy > 1 so thaty = inf;>;, d(Z,09Q;) > 0, by (4.8)
u; — Us UNniformly on B(Z, 1), thus by harmonicityVu; — Vu., uniformly on B(Z, 7).
Thuslim;_.« |Vu;(Z)| = [Vus(Z)|. Now we consider two different cases: eithedenotes
the Green’s function with finite pold or v« denotes the Green’s function with pole at infinity. In
the second case; denotes the Green’s function 0f with pole at infinity with corresponding
Poisson kerneh;. By Theorem 3.1

K2

(4.84) [Vui(Z)| < / hi dwy.

09
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Thus by Lemma 4.3 we have that
(4.85) |Vuse(Z2)] < 1.

If u denotes the Green'’s function Qfwith pole atA, u; is a multiple of the Green'’s function of
Q; with pole atA; = 4=% . In fact by (4.2) and (4.43) we have that

_a(B(@Qi,i)) Gi(Ai, Z)

(4.86) ) = A B0

Since fori large 6;(Z) = dist(Z,00;) < 2442 = _L§(4), and Z € B(0,22) by Theo-
rem 3.2 we have that

A A ge 4 @ (BO0,3:(A))) (6.(2) \F
(487 |VG1(A“Z)|<8! Kitdoi+C (0;(A)" <5i(Ai)) '

Combining (4.86), (4.87), (4.13) and (4.39), and using the factdkhts Ahlfors regular we
obtain

A(B(Q4,0(A))) I <5i(z))%.

@89 [Vu2)|< [ hast +EEEED e (S

o9

Sinceh = k4, andlog h € VMO(052), Corollary 2.4 ensures that

WA (B(Qs,5(A))) o(B(Qi,6(A)\ T _ | (5(A)\"
489 AB@nm) gC< a(B(Qi,m)) “( > |

Combining (4.88) and (4.89) we obtain folarge enough that

wniole fust (40’ () o

T

oo

i

(4.90) < ! hedo? +c<ﬁ)%wm<z>)?

whered (Z) = dist(Z, 02« ). Thus by (4.63) letting tend to infinity in (4.90) we have that
(4.10) also holds in this case. This concludes the proof of Theorem 412.

THEOREM 4.3. —If Qo C R"™! u andw, are as in Theorem.1, thenh, = ;ljj—:z satisfies
(4.91) hoo(@) =21 forH"-a.e.Q € 00x.

Proof. —-By Theorem 4.10, is an unboundedJ-Reifenberg flat chord arc domain. Hence
weo and o, are mutually absolutely continuous (see again [4] and [25]), and the Radon—
Nikodym theorem ensures thiat, = 9= € L], .(do.). Moreover forp € C2°(R™*)

loc
. im ph;do; = lim pdw; = Ydweo = Phoo dT oo .
4.92 1i hy do; = 1i d d hoo d
oQ; oQ; N0 (219788
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Recall that eacK; is ad-Reifenberg flat chord arc domain, and that — xq.. in L, (R™*1).

Let #; denote the inner unit normal @X2;, 7. denote the inner unit normal @, and let
e € S, then forp € C°(R™ 1) andy > 0,

(4.93) / pdo; > / o(m; ey do; = —/div(tpe)
and sincele, ic ) = 3 (ef* + [ |* — [ —ef*) =1 — 5[ —ef?,

11— 00

1i_minf/tpdai>—/div(tpe): / ple, i ) doss

oQ; Qoo 1219788
1
(4.94) > / cpdaoo—§ / O —e|*dose.
0o 0N oo

Assume that suppoftp) C B(0,M), andy > 0. Using the same notation as in the proof of
Theorem 4.2 we know that sindeg h € VMO(992), for ¢ € (0,1) there existg, > 1 so that for
i =i and|Q;| < 1 there exists7(Q;, Mr;) C B(Q;, Mr;) N 0N satisfying

(4.95) o(B(Qi, Mr;)) < (14¢)0(G(Qs, Mr;))

and

(4.96) f hdo ~ h(P) for P € G(Qi, Mry).
B(Qi,Mr;)

If G; = %(G(Q“ MTl) - Qz) andF; = 09Q; N B(O, M)\Gl, then fOI'Q eqG;

. ' fB(Qiﬂ‘i)hdU € fB(Q'L;T'L)h'dU

which implies that

fB(Q- Mr-)hda/
4.98 /hi do; ~ —F———— do;.
(4.98) pdoi Fotarhdo ®

G; i
Moreover using the fact thar2 is Ahlfors regular, the definition of; = H™ L 02; and (4.95)
we have
[edoi= [ vdoi~ [ s> [ pdoi~lolnoip)
Gi aQ F; ol
(4.99) > [ wdoi = Cllglct™e.
o0

Combining (4.98) and (4.99) we obtain foe ig

/tpdaig/tpdai—i—CHLpHmMns
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.{I;B(Qi-,'r'i)h dO’

< (1
( - E) fB(QinTi)hdU

/higodai—l—CM"H@HOOs
G;

ahd
(4.100) < (1+5)2M /wdwi+0M"llsolloo€-

e hdo
FB(Qi M) o

Furthermore (4.95), (4.96), (2.4) and our choice: of i, the fact thaogh € VMO(99) and
0% is Ahlfors regular yield

f hdo:m{ / hdo + / hdo}

B(Qi,ri) B(Qi,r:)NG(Q:,Mr;) B(Qi,ri)NG(Q;,Mr;)e
o(B(Qi,ri) NG(Qq, Mr;))
o(B(Qi, i)

w(B(Qi,ri) NG(Qi, Mr;)°)
o(B(Qi,ri))

hdo

B(Qi,Mr;)

<(1+¢)

+

w(B(Qi,m3)) (o(B(Qi,7:) NG(Qs, Mr;)° i
<+ f "d"”o(B(Qi,m)( (B(@Q ) >

B(Qi,Mr;)

(4.101) <(1+4¢) f hdo + Cet M / hdo,
B(Qi,Mr;) B(Qi,ri)

which implies

(4.102) f hdo < (1+CeiM*) f hdo.
B(Qi,ri) B(Qi,Mr;)

Combining (4.100) and (4.102) we have fog i

(4.103) /<pdoi<(1+CMSTnsi) /npdwi+CM”H<pHoos.
oQ; o0

Thus (4.103) ensures that for every 0, andy € C°(B(0,M)), ¢ >0

limsup/cpdaig(1+CM%5%)_lim /godwi—I—CM"HgoHOOE

71— 00 11— 00

(4.104) <(1+CM*Fet) / ¢ dwoo + CM™ |0 et
O oo

Lettinge — 0 we conclude that fop € C2°(R"*1) ¢ >0
(4.105) limsup / pdo; < / Phoo do oo .
T e, 020c
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Combining (4.94) and (4.105) we have that foe C>°(R"*1), 0 >0

2
CIo3 900 eJo R

(4.106) /cphoodaoo> / cpdaoo—l / ol —el?dose.

Let Q € 0"Q, approximatingy z(q,») by smooth functions with compact support, and letting
e =T (@), (4.106) implies that

1
(4.107) / hoo doag > / doeo — 5 / s —@:(Q)Pdam,
B(Q,r) B(Q,r) B(Q,r)
and
1
(4.108) f hoo doos > 1= 5 f 7% — 12 Q)] dowe.

B(Q,r) B(Q,r)

SinceQ € 9*Qc, lim, o f (0, |ied — N (Q)]? dose = 0, thus (4.108) implies that fok™
a.e.Q € 00

(4.109) hoo(Q) = lim hoodose >1. O

B(Q,r)
THEOREM 4.4. —The subsequence introduceddiri also satisfies

(4.110) i — Ooo,

weakly as Radon measures, where = H"™ L 0.

Proof. —Let p € C°(R"*1), v > 0 and suppose thatipport(¢) C B(0, M). Using the same
notation as in the proof of Theorem 4.3 we have that giver0 there existgy > 1 such that for
1 >1g (see (4.103))

(4.111) /wdoi<(1+0M%ei) /(pdwi+CM”H<pHoos.
oQ; o0

Sincey > 0, (4.97) yields

hd
(4.112) /gpdai2/@d0¢2(1+5)_1M/his@dJi.

B inith'
s J Fo@inrohdo J

Furthermore (4.95), (4.96), the fact thag h € VMO(0Q2) anddf2 is Ahlfors regular yield as in
(4.102) that

f hda}W / hdo

B(Qi,ri) B(Qi,m:)NG(Qi,Mr;)
_10(B(Qi, 1) NG(Q4, Mry))

o(B(@Qr ) hdo

B(Qi,Mr;)

>(1+e¢)
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a(B(Qi,ri) NG(Qi, Mr;))°
o(B(Qi,ri))

>(1+e)! / hda[l—
B(Qi,Mr;)
(4.113) 2(14—6)71 f hda[l—CM"E].
B(Qi,Mr;)

To estimate the term

(4.114) /higodoiz /cpdwi—/cpdwi,

G; o9 F;

we need to bound the second term on the right hand side. Using (4.13), our cheice ®f
combined with (2.23), (4.95), and the fact tla is Ahlfors regular, we obtain

/ o dw; < | plloowi(F3)
F;
( (QHMTZ)CQB(QMM ))
( (Qurl))
(

w(B(Qi, Mr;)) (o G(Qs, Mr)° B(QZ—,Mm))%

<l@lloery o (B(Qiri)) =

<Cliglloori "o (B(Qi, i)

w(B(Qi, 7)) o(B(Qi;7i))
m 3 fB(Qi,Mri)hdo
(@115) < Cfpllo M i d2@ 10
J;B(Qwrl)hdo-
Combining (4.112), (4.113), (4.114), and (4.115) we have for0 small
(4.116) / pdo; > (1—CeM™) / wdwi—C’HwHooM"a%.
oQ; oQ;

Thus (4.111) and (4.116) yield that for> 0 small enough andlarge enough (depending eh

(1—O€M”)/tpdwl-—C'HwHooM"g%g/(pdai
o0 o0
(4.117) <(1+CM*et) /wdwﬁcw”@”mg.
o0

Lettingi — oo in (4.117) and recalling (4.10) we have that for every 0

(1—CeM™) / tpdwoo—C'HwHOOM"a%gliminf/g?dai,

(4.118) Q00 9
limsup/godaig(l—i—CM%si) / Y dwes + CM"™ ||| k-

o0 [2}9288

Thus for everyp € C>(R"*1), ¢ > 0 we have

11— 00

09 0o

(4.119) lim pdo; = / Y dweo-
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Since Qu, Uso, Woo and h, satisfy the hypothesis of Theorem 2.2 we conclude that
dws = dos. Therefores; — o, asi — oo weakly as Radon measures

We now recall the statement of the Main Theorem and present its proof.

MAIN THEOREM. —Assume that
(1) © c R**!is aé-Reifenberg flat chord arc domain for soe- 0 small enough.
(2) logh € VMO(do).

Then() is a chord arc domain with vanishing constant, i/8.€ VMO(do).

Proof. —Let K C R"*! be a compact set, and let

(4.120) I=lim sup |[|7[.(B(Q,r)).
r=0Qesank

Our goal is to show thdt= 0. There exist sequencé®); };>1 C 902N K, and{r;};>1 C Rsuch
thatlimi_,oo Qz = Qooy 0<rilim; ,oor; =0 and

(4.121) lim ( f |7 — T Q| da) =1.
B(Qi,ri)
We consider the blow up sequend@s=r; ' (2 — Q;), 9% =71 (02 — Q;), ui, w; andh;
associated witl); andr; as in (4.2), (4.4) and (4.5). Theorems 4.1, 4.2, and 4.3 combined with

Theorem 2.2 ensure that by passing to a subsequence (which we relabel), and modulo rotation
we have that

Q; — RTI in the Hausdorff distance sense,
(4.122) uniformly on compact sets,
00; — R" x {0} inthe Hausdorff distance sense,

(4.123) uniformly on compact sets,
and
(4124) iy, wi ~H" L (Rn X {O})

Recall also thatyg, — xgn+1 in L (R"*1), thus fore € C2°(R"*1), ¢ > 0 ande € S™ we
+
have

(4.125) lim [ div(pe) = / div(pe).

11— 00
Q n1
RY

If m; denotes the inner unit normal &82; we have that

(4.126) /go(n_{-,e) do; = —/div(cpe).
oQ; Q;
Therefore
(4.127) i [ mddni= [ plensrepant
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which can be rewritten as

1
lim /@dai—§/<p|n_{—e|2dai

o0Q; o0Q;
1
(4.128) = / ©dH™ — 3 / olenir —el> dH™.
R”x {0} R”x {0}
Theorem 4.4 yields
(4.129) lim / ol —e*do; = / olenr —el> dH™.
o0 R"X{O}

Lettinge = e, 41 andy € C2°(R™ ), o > X p(0,1), (4.129) shows that

(4.130) lim |7 — ent1|?do; =0.

B(0,1)

Note that forQ € 99, 77 (Q) = 7 (1;Q + Q;) where™ denotes the inner unit normal &52.
Furthermore

(4.131) f |77 — eny1|*do; = f |7 — enq1)? do.
B(O,l) B(Q“’I‘T)
Combining (4.121), (4.130) and (4.131) we conclude that. In fact note that

1
2
2 da>

(4.132) <2 lim < / |7 — enyl? da) =0. O
B(Qi,ri)

l—_lim( f 7 — T oun
B(Qi,r:)
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Appendix A

The main purpose of this appendix is to prove Lemma 3.2 as well as Rellich’s identity for
chord-arc domains with small constant. We would like to thank G. David who pointed out to us
that our proofs could be simplified, and that some of the results held in a more general class of
domains.

This appendix is organized as follows: we first show that Reifenberg flat chord arc domains
can be locally approximated from the interior by domains of a similar type. We use this
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approximation to show that 2 is such a domain, ané' denotes the non-tangential limit of

the gradient of Green'’s function with pole at infinityor of the gradient of the Green'’s function

with pole at4 € Q, G(A, —), then eitherh(Q) = (F(Q), ™ (Q)) or ka(Q) = (F(Q), 7 (Q))

for H™ a.e.Q € 992. Hereh (resp.k 4) denote the Poisson kernel with pole at infinity (resp. the
Poisson kernel with polel). In the second part of the appendix we show thatAoas above,
F(Q)=h(Q)T (Q) or F(Q) =ka(Q)™ (Q) for H" a.e.Q € 99Q. The proof presented here

is due to G. David. Our original proof made use of the parameterizations for chord-arc surfaces
with small constant constructed by Semmes in [24]. In the third part of the appendix we prove
Rellich’s identity for chord-arc domains with small constant, verifying a point left open in [18].

A.1. Approximation of Reifenberg flat chord-arc domains

Recall that if(2 is a set of locally finite perimeter which is Reifenberg flat then the topological
boundary ofQ2 and its measure theoretic boundary agree (see Remark 4.2 in [18]). Moreover
H™(0Q\0*Q2) = 0; hered* denotes the reduced boundarydfThis implies that fof{™ L 9
a.e.Q € 00

(A11) lim / 7 (P)dH"(P) = 7 (Q),

r—0

B(Q,r)Nax
(A.1.2) 7 (@) =1,

(A.1.3) Jimg 7920 B(@Q, 7))
r—0 W™
See [7, Chapter 5]. Her& denote the inward unit normal vector 2.

We now begin the construction of the approximating domains. et R"*! be aé-
Reifenberg flat chord-arc domain. Fix, ¢ R"*! a compact set, an®, = Ry, so that (1.8),
(1.9), (1.10) hold. Let)y € Ko N 02, let R € (0, £2), and letp € (0,1) be a small but fixed
constant (to be determined later). Let= Rp’, for j > 1. Let {P;;}; be a finite subset of
0*Q N B(Q,2R) satisfying

(A.1.4) |Pji — Pj|>r; fori#l

and

=1.

(A15) 99N B(Qo,2R) C|JB(Pji,rj) C UB(Pji, L3r;

1 ) - B(Qo,GR)

We denote byr;; = 7 (P;;,r;), where the notation is as in (1.9) and (1.10).
Let {);; }; be a smooth partition of unity associated{tB(P;;,r,)} satisfying

(A16) /\”(X):l if |X—Pji|<%7°j,
o Nji(X) =0 if [X — Pyl > Py,
Cy, Cy,
(A.1.7) 0< A <1, [Vl <=, [VPNul <=
rj U
and

(A.1.8) ;/\ji(X):O and zi:V)\ji(X):O forXe(B(%ﬂR)ﬂ@Q/%).
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Define forX € R"*! smooth functionsV; and¢; by

(A.1.9) Ni(X) =Y Ni(X)ng;
and
(AllO) ¢j(X):X+OéTij(X),

where o denotes a small positive constant much larger th@n o will be determined later
as a function of5. Note that if X ¢ (J, B(P;;, 13i) then N;(X) =0 and¢;(X) = X. Our
goal is to show that; is a bilipschitz map frorﬁR"Jrl to R"“, with constants close td
(depending onx > 0). To do this we need to estimat¥;(X) — N;(Y). SinceN,(Z) =0
for Z ¢ |, B(Pji, 13#) we only need to consider cases. EithelX € J, B(Pj;, 13i) and
Y ¢ U, B( ﬂ,li’%) or both X,Y € (J, B(P;i, 2%). Since {B(P;;, 214)}, is a disjoint
collection, thenX only belongs to at mosk, balls in the collection{ B(P;;, ~)}, where

Jir 4

K, is a constant independent of (only depending om). If Y ¢ (J, B(Pj;, 13i) there is
Z € dB(P;;,, 211 for somei, such that

(A.1.11) X — Z|<|Y — X|

sinceN;(Y) = N;(Z) =0then

(A.1.12) = > (Aji(X)—Aﬁ(Z))n—j;.
X — PJ7| 1375

Since|n;; | =1 then

Cn
(A.1.13) |N;(X) = N; (V)| < =X -]
J
and
(A.1.14) (1= Cra)lX = Y| <|6;(X) = 6;(Y)| < (14 Cpa)| X =Y.

Now we need to analyze the case whine |, B(P;;, 222). If X € B(P;;,~24) and

Y ¢ B(Pj;, 224, chooseX;; € OB(P;;,~21) so that|X — Xj;| < |X — Y. Similarly if

Y € B(Pj, *3%) andX ¢ B(Pj, ~5%) chooseYj; € 0B(Py, ~54) so that
¥ —Yul<|Y - X].

Using this notation we have that

N;(X) = N; (V) =D (M X) = A (V)i

= Z (/\.ii(X) i (V) 757
137“
+ Z ()‘ji(X) - Aji(Xﬂ))@
‘X PJ1‘<137 »
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(A.1.15) + > (Nji (Vi) = X (V)55

137, 137r;
|X—Pji|>—L, |Y = Pji|<—L

Thus using the finite intersection property of the coverings involved, and the chaig ahd
Y;; we have

C
IN(X) ~ N, ()] < > Cupx -y
X Pul< 2y py <t
C
+ > — X = Xl
o Pl <205y pyys
C
+ > — Y~ Y|
137‘j 137‘j Tj

| X —=Pji|>—L, Y =Pji|<—

(A.1.16) <Six_y),
]

which once again implies that
(A1.17) (1= Cra)|X = Y[ < [65(X) = 6;(Y)| < (1 + Cpa)| X =Y.

Thusg; is a bilipschitz map fronR™** into R"*! with constantg1 + C,«) for o small enough.
In particularg; is a homeomorphism frof” ! onto its image which coincides with the identity
outside the balB(Qo,6R). A simple argument shows thaf (R" 1) = R"*1,

Define
(A.1.18) Q,;=¢;(Q).

Sinceg is a homeomorphism fro"+! ontoR"™*!
(A.1.19) 00 = ¢, (00).
LEMMA A.1.1. - There existy,, d,, > 0 so that ifQ2 is a §-Reifenberg flat chord arc domain

(for § < 0,) andQ); = ¢,(12), with ¢; defined as above with < «,, then for eachy > 1,Q; isa
chord arc domain. Moreover

(A.1.20) Q; — Q in the Hausdorff distance sense
and
(A.1.21) 08); — 09 in the Hausdorff distance sense.

Proof. —Our initial goal is to show that bilipschitz maps transform sets of locally finite
perimeter into sets of locally finite perimeter. Due to the lack of a reference we present the
proof here. Note that givep € C1 (R R" 1) with || < 1

/ divp(Y)dY = / div o (¢ (V) J; (V) dY
Q

Q;

(A.1.22) z/divgo(cbj(Y)) dY+/diV<p(¢j(Y))(J¢j(Y) ~1)ay.

Q Q
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Since() is ad-Reifenberg flat chord arc domain fpre C(R™ 1, R"*1), || < 1 then

(A.1.23) /divtp(d)j(Y)) dY:/<p(¢j(Y)) - (Y)dH™(Y),

Q o9

and ifspt p C B(Q, R1) with R; > 6R

(A.1.24) }/divtp(d)j(Y)) dY} <H™ (092N B(Q, Ry)) < oo.
Q

On the other hand sineg; = id outsideB(Qo, 6R) and smooth ifR™ !

‘ [ (oo (76,00 - 1) dY‘

- e e -]

QNB(Q,R1)

S| v e6,0) (6,00 1)) — e(6,1) 96, ay
QNB(Q,R1)

< (o (6,(1) (76,(¥) - 1)) )
QNB(Q,R1)

+' [ ete)vism) dY\
QNB(Q,R1)

| [ e -y we e
90NB(Q,R1)

+ / |D?¢;(Y)|dY
QNB(Q,R1)

(A.1.25) <C,H"(0QNB(Q,Ry))+ / |D?¢;(Y)|dY.

QﬁB(Q,Rl)
Note that by definition (A.1.10)
(A.1.26) D?¢;(Y) =ar;D>N;(Y) = ar; > _ V2N (X);
Thus
2 2 Cn Cn
(A.1.27) ID%¢;(YV)|<ar; ) |[VPN(X)] < arj—3 =—"a,
IX—Pji|< 1347‘]‘ J J

and (A.1.25) becomes
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’ [ (oo (7ov) 1) av
Q
aC,

J

Combining (A.1.22), (A.1.23), (A.1.24) and (A.1.28) we conclude that for gaght, 2, is a
set of locally finite perimeter. Sing# is Ahlfors regular there exists > 1 so that for@ € 912,
andr >0

(A.1.28) <C yH" (09N B(Q,Ry)) + Ry

(A.1.29) CTlr" <H™M(0QN B(Q, 1)) < Cr.

Sinced); = ¢;(§2) andLip ¢;, Lip ¢j‘1 <1+ ChathenforP; € 9Q; N K andr € (0, Ry) if
Pj = ¢;(P) with P € 90N ¢; ' (K) then provided tha€',,a < 1 we have

r

(A.1.30) C¢;(0QNB(P,(1+ Cra)r)),
which implies that forx small enough
H" (09, N B(Pj,r)) <H"(6; (02N B(P,(1+ Cpa)r)))
< (Lip¢;)"H" (0QN B(P, (1 + Cra)r))
(A.1.31) < Cor™,

(see [7, Section 2.4] for a justification of the second inequality). Similarly

n r n -
H (anB<P,1+Cna)> <H™ (91 (99 N B(P;,1)))
(A.1.32) < (Lipg; ') "H" (0, N B(P;, 7)),
and
(A.1.33) Cy 'r™ <H™(09; N B(Pj,7)).

We have that for each> 1, Q; is a set of locally finite perimeter whose boundafy; is Ahlfors
regular. To show the; is a chord arc domain we need to prove thatis an NTA domain. To

do this we note that the image of an NTA domain via a bilipschitz map is an NTA domain. Since
2 is NTA there existM > 1 andR > 0 so that

(A.1.34) Corkscrew conditionFor anyP € 99, r < R there existsA = A(r, P) € Q
such thatM —1r < |A — P| <r andd(A,9Q) > M ~'r.

(A.1.35) QF° satisfies the corkscrew condition.

(A.1.36) Harnack Chain Conditionlf ¢ > 0, and X, X, € QN B(P, §) for someP € 012,
r < R,d(X;,0Q) > e and|X; — X,| < 2¥¢, then there exists a Harnack chain
from X to X of lengthM k and such that the diameter of each ball is bounded
below by M ~! min{dist (X1, 09), dist(X2,9Q)}.
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Let R= (1 + Cha)" 'R, let P; € 9Q;, andr < R. SinceP; = ¢;(P) for someP € 012, then
there existsA = A(P,r) € Q such that

r

1+C,«a

r

1+C,a

(A.1.37)M ! <|A-P|< and dist(A,00Q) > M!

r
1+CLa
therefored; = ¢;(A) € ; and
M~ (14 Cpa)~?r < |¢;(A) — Pj| <r and

r
A.1.38 dist(A4;,09;) > M~ ————.

( ) ist(A;,00;) > (1+ Cpa)—2

Thus(; satisfies the corkscrew condition with constadt= M (1 + C,,«)? and forr < R.
Similarly ¢ satisfies the corkscrew condition with the same constants. In order to verify
that the Harnack chain holds let> 0 and X{, X} € Q; N B(P;, %) for some P; € 99,
dist(X7,00Q;) > efori=1,2and|X] — X3| < 2*c. If P; = ¢,;(P) andX; = ¢(X;) then

r(1+ Cpha)

PcoQ Xl,XQEQﬂB<P, 1

> . dist(X;,00) > e(1+ Cha)

and|X; — Xz| < 2%¢(1 + Cpa). Sincef2 in NTA, there exists a Harnack cha{tB(Y;, r;) } M4k
joining X; to X, satisfying the condition above. Using the fact that is bilipschitz and
Lipg; < 1+ C,q, itis not difficult to check that the collectiofB(¢;(Y), (1 + Cra)r) } Mk
forms a Harnack chain joining; (X1) to ¢;(X5) and satisfying the diameter condition above.
Therefore(?; is an NTA domain and hence a chord arc domain. To conclude the proof of
Lemma A.1.1 we need to show that thg’s (resp.0€2;'s) converge tof) (resp.(?) in the
Hausdorff distance sense. Singe= id on R"*!\ B(Q,6R) by (A.1.4), (A.1.9) and (A.1.10)
thenQ = Q;, Q° = Q5 anddQ = 9Q; onR* 1\ B(Q,6R). For X € B(Q,6R), (A.1.7) and the

finite intersection property of the collectiqB(P;;, %)} ensure that

(A.1.39) IN;X)| <Y Xzl < >0 Mi(X) < K.
‘ \X*Pji\él?fj

Therefore

(A.1.40) |9, (X) — X| < aKprj.

Sincee; (2) = Qy, ¢;(29) = Qf andp;(092) = 012; we have that
(A.1.41) Q° C (95, aK,r;) and 90 C (09, ak,r;).
Since¢; is a homeomorphism fro"*! ontoR™**, for eachy; € Q5 (resp.P; € 99;) there

existsY € Q¢ (resp.P € 99) so thatg;(Y) =Y (resp.¢,;(P) = P;). Hence (A.1.40) implies
that

(A.1.42) Q¢ C (Q°,2aK,r;) and 09; C (09, aK,r;).
Combining (A.1.41) and (A.1.42) we have that

(A.1.43) D[, Q) <aK,r; and D[0Q;,00] < aK,r;.
Sincer; — 0 asj — 0 this concludes the proof of Lemma A.1.10
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We now study the local properties Of nearQo, whereQ, € 902N Ky is as in (A.1.4).

LEMMA A.1.2. — There existy,, §,, > 0 so that ifQ) is a J-Reifenberg flat chord arc domain
(for § < 6,) and); = ¢,(Q2) for j > 1 with ¢; defined as above with < «a,, then

(A.1.44) ﬁij(Qo,?> CQﬂB(Qo;?)
and
(A.1.45) H'LOQ; — H"L 0

j—oo

weakly as Radon measures. Moreovefijf denotes the inward unit normal 9Q; then for
PedQ

(A.1.46) mj (95(P)) = 7 (P).
Proof. —Let X; € Q; N B(Qo, 2&), there existsY € O so that
$;(X) = X;.

If X ¢ U, B(Pji, =2 then
(b]()():)(:)(7 EQQB(Q(),?).

Thus we are only concerned with the case whew | J, B(Pj;, %). Let X € B(Pj;, %),

and leto;; = 7 (Pj;, Lr;). Then either(X — Pj;, 7757 ) > ar; or (X — Pj;, ;1) < \Jar;.
Before looking at each case separately we need to estimate thefdvefleeen;; andnj; .
Using (1.8) we know that

13
D [L (sz'a zfj) N B(Pji,rj), L(Pji,j) N B(ijij)}
13
gD L Pji,z’l’j ﬂB(Pji,rj),QQﬂB(Pji,rj)
+D[0Q N B(Pji,rj), L(Pji,75) N B(Pji, 7))
1 1 137,
<D |:L<Pji, ;Tj) N B<Pji, Z3Tj>789 N B<Pji, %>:| + 257’j
13
(A147) < 757"]' + 257’j < 95Tj.

Therefore

(A.1.48) cosf >1—C6.

In order to show that itX € B(P;;, 134”') N Q theng;(X) € Q first consider the case when

(X — Py, 753 ) = y/ar;. Since|N;(X)| < >, Mji(X)|7j; | < Ky, the fact that

(X = Py, v57) = Var;
guarantees that
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(¢j(X) = Pji, 75; ) = (X — Pji, 757 ) + (ar; N;j(X), 75 )

2\/_TJ+O‘TJ< (X)vy_ﬂ)>
> ar; — Kyar;
(A.1.49) > Var;(1— K, J/a).

Provided thatv is small enough so thak,,\/a < 5, and thaty is small enough depending on
a so thatl /a > 12§ we conclude thatX — Pj;, 777 ) > 26127, which by (1.9) implies that
¢;(X) € Q (by our choice ofR andp > 0). _

Now we consider the case whéX — Pj;,775; ) < y/ar; sinceX € Q, (1.9) implies that

1
32TJ5 <X - PJZ,Vji> < \/a’l”j.

(A.1.50)

If L(P;s, 13#) denotes the plane througd?); orthogonal ta7;; , (A.1.50) implies that

13 13
(A.1.51) dist(X,L(Pjh 4m> mB(pj“ 473)) <ar;,

and (1.9) guarantees that

. 137”7'
(A.1.52) dist( X,0Q N B Pj;, - )< Var; +
Hence there exist € 0Q N B(P;;, 13#) so that

13
(A.1.53) X — QI < Var; + Zbr; < 2V/ar;,

whenever2s < \/a. Using (A.1.14)

|Q — Qo| <[Q — X|+ X — Qo| < |X — Qo| +2Var;
<(1+Cha)|¢; 1 (X) — 651 (Qo)| +2Var;
< (14 Cra)(1X; — Qo + Qo — ¢; 1(Qo)]) +2var;

< (14 Co) 50 4 (14 Cr)[5(@0) — Qo + 2VaR
<0+ Ona)gR—i- (1+ Coa)2ari| N;(Qu)| +2vaR
(A.1.54) < (g +2\/E+Cna>R
Choosingy andd > 0 so that2\/a + C,,o < £ and 26 < \/a we have that
(A.1.55) 1Q — Qo| < 2R.
Thus by (A.1.53) and (A.1.55)
(A.1.56) dist (X, 92N B(Qo,2R)) < 2v/ar;.
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Moreover there exist®;; so that|Q — P;;| < r; and|X — Pj;| < r;(1 + 24/«). Our goal now is
to show that ifr;; = 7 (Pj;, (1 4+ 2/a)r;) then(¢;(X) — Py, 751 ) > 26(1 4+ 2y/ar;), which
by (1.9) implies thatp,; (X) € Q. Since

(A.1.57) <¢J( ) — 7ly7l>:<X_levlfjl>>+a7aj<N7'(X)’V7z>v

and sinceX € Q, by (1.9)(X — Pj;,75i ) > —26(1 + 2\/a)r;. Then (A.1.57) becomes

<¢J( ) — Jl7VJl> —60r; +aTJ<NJ(Q)’V—ﬂ>>
(A.158) +ar;(N;(X) = N;(Q), 7 ).

Using (A.1.13) and (A.1.53) we have that
(A.1.59) [(N;(X) = N;(Q), 731 )| < Cuv/a.

Recall thatV;(Q) =" \jx(Q)n;% and
k
(A.1.60) (N;(@),751) = > A (@Q)(757, 75 )
k

A similar argument to the one used to show (A.1.48) V\}ftheplaced byl + 21/« shows that
(A.1.61) (%, v51) > 1—C6°.

Combining (A.1.60) and (A.1.61) we have that sirige 02 N B(Qo,2R) by (A.1.8)
(A.1.62) ). 751 ) E:&k §)(1—Cpé?) >1-20.

From (A.1.58), (A.1.59) and (A.1.62) we deduce that

<¢J( ) — Pji, 5 > —67r;6 +ar;(1 — 2V5) — Charjya
(A.1.63) >r; (a(l —3va) — Cha/a — 65).
Choosingx so thatl — 3/« > % andC,a < , andd > 0 so thaty < 7 we conclude that

(A.1.64) (6;(X) = Py, 73t ) > Trj — 63r; > 661, > 20(1+ 2/@)r,
which implies thatX; = ¢;(X) € Q by (1.9). Hence we have shown that
ﬁj QB<QQ,?) CQQB(Q(), 3R>

In order to prove (A.1.45) and (A.1.46) we need to look at the Jacobian oh oS, Joa¢;.
If Pe0*Q,letr(P),...,7,(P) be an orthonormal basis f@i»0f2. Note thatfork =1,...,n

(A.1.65) D4;(P)(7(P)) = m(P) +ar; Y (VA (P),7e(P))iry
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whereV \;;(P) denotes the gradient of;; in R"*1, andD¢; (P) : Tpd2 — R" ! is the linear
map induced by; on Tpo<. By definition (see [26, §12])

(A.1.66) J¢;(P) = Joad;(P \/detchj (P)* o D¢p;(P)

whereDg; (P)* :R" ™! — TpoS) denotes the adjoint transformationfap; (P).
Since

D;(P)* o De;(P)(n(P)) =) (D¢;(P)" 0 Dé;(P)(7k(P)),n(P))i(P)

k

Il
-

I
NE

(A.1.67) (D¢;(P)((P)), D (P)(7i(P)) )7k (P),

b
Il

1
thenby 1.6.4and 1.7.5in [8]

(J6;(P))” = (De;(P)* 0 Dg;(P)(11(P)) A+ A Dpj(P)* 0 Dby (P)(ru(P)),
(A.1.68) T(P) A+ AT (P))
where( , ) denotes the inner product ik, 7,052 induced by that off;,,092. By 1.7.5 in [8] and
[3, Chapter 1], ifp;, w; : TpOQ — R denote tha -forms defined by, (v) = (D¢, (P) (1 (P)),v)
andy; (v) = (Dg¢;(P)* o D¢;(P)(mi(P)),v). Then
(A-1.89) (D¢;(P)* 0 D (P)(ma(P)) A+ A D (P)*
© D;j(P)(7a(P)), m1(P) A+ ATn(P))

=P A Aen) (1(P),- - a(P))

= det (i (7i(P)) —det<D¢g( )" © D;(P)(1u(P)), 7 (p))

= det (D¢;(P)(n(P)), D;(P)(m(P))) = det(wi (De;(P)(7x(P))))

= (w1 A Awn>(D¢J (T1(P)) -+, De; (Ta(P)))

:<D¢J( )( (P)) AN Dg;(P ( P)) D¢J(Tl ) "’AD¢j(Tk(P))>

= |Dé;(P)(ru(P)) A+~ A Dy (ru(P)) .
Combining (A.1.68) and (A.1.69) we conclude that

(A.1.70) J6;(P) =|Dg;(P)(1(P)) A--- A Dg;(P)(a(P))].
Since is a set of locally finite perimeter whose measure theoretic boundary corresponds to its
topological boundary then for evesy € C} (R™+1, R"*1)
(A.1.71) /dideac=—/<X7W)dH",
Q o0

where7 is the inner unit normal.
Thus for anyw € D*(R™*!) (i.e.,w is a smooth-form with compact support)

(A172) T(w) = / (w(Q), T (Q)) dH"

o0
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defines an integer multiplicity rectifiable-current?’. Here ( , ) denotes the usual pairing for
A"(R™1) and A, (R*1). See [26, §27] for notation and details. In this case foe 9*(2,
7 (P) =471 (P)A-- AT, (P). Inparticularr (P)A- - - A7, (P)| = 1. Sinceg; : R" 1 — R +1

is a bilipschitz map ang; (0?) = 99, T; = (¢;) T defines an integer multiplicity rectifiable
n-current, namely

(A.1.73) Tj(w) = / (w(0(Qy)), 75 (Q))) dH™(Q;)
o9

wheren; (P;) = %’W if ¢;(P)=P; andP € 0*Q} (i.e., forH™ a.e.P; € 0°Q;). By
8§26 in [26] and the remark above we have that

oy Doi(P)xT (P)

(P = =55,

D¢;(P) (11 (P)) A--- A D¢;(P)(7a(P))

A.1.74 =+ .
(AL74) [76;(P)

Hence in order to understand the behavio/ ¢f andm; asj tends to infinity we need to analyze
the behavior ofD¢; (P)(n(P)) for Pe 0*Qandi=1,...,n.

First note that since,; : R"*! — R"*! is bilipschitz, H" (0Q\0*Q) = H™(0Q,;\9*Q;) =0
by Lemma A.1.1 and Remark 4.2 in [18], asgl(992) = 99, then

(A.1.75) H™ (0°Q;\¢;(0°Q)) = H"(0"Q\¢; ' (97©;)) =0.
ForP € 0*QNB(Qo,2R)andl =1,...,n, sinced_, V\;;(P) =0then

Y AVNP)(P)g: =Y (VN(P).n(P)) (m5; = T (P))

A i

= Y (VwPLaP)( -7 (P)

|P—Pji| < 2r;

(A.1.76) <C, sup |n_7{ - (P)|,

|P—Pji| <y

where® (P) denotes the inner unit normal &) at P. Thus forP € 9*Q andi =1,2,...,n,

(A.1.77) |D¢; (1(P)) — 7i(P)| < Cra sup |y — 7 (P)].

|P—Pji| <Ay
LEMMA A.1.3. - Using the notation above we claim that fBre 9*Q2

(A.1.78) lim  sup | -7 (P)[=0.

I PPy | <

We postpone the proof of this lemma until later, and continue with the proof of Lemma A.1.2.
Combining (A.1.77) and (A.1.78) we conclude that for 9*Q

(A.1.79) jlingo |Dé; (m(P)) — mu(P)| =0.

SinceP € 9*Q2 by 81.7.5in [8], (A.1.77) and (A.1.78) we have that
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(A.1.80) |Dg;(11(P)) A+ AD¢;(mn(P)) =11 (P) A+ ATy (P)|
<|Dg; (11 (P)) A--- A Déb; (1 (P ))

— Do (r1(P)) A+ AD¢7(Tn 1(P)) A n(P)]

+|D; (11(P)) A+ A D (ru-1(P)) A7 (P)

— Do (T (P)) A /\D@(Tn 1(P)) ATt (P) Ao (P)| + -+
+\D¢J(71(P))/\ 2(P) A+ ATo(P) = 11 (P) A=+ Ao (P)|

—Tl(P)) /\Ti+1(P)/\-'-/\Tn(P)‘

<3196 n(P) D s P D6 ) =)
X ‘Ti+1 P “Tn P)‘
< Cha sup | — 7 (P)| < Chev.

|P—Pji|<Hr;
Therefore forP € 6*Q

(A181)  lim Do;(ni(P)) A+ A Doy (7(P)) =7i(P) A+ ATo(P),

which implies using (A.1.70) and (A.1.74) that fBre 9*Q andP; = ¢;(P)

(A.1.82) lim J¢;(P)=1,
j—o0
and
(A.1.83) lim 7; (P;) =7 (P).
j—o0

This proves (A.1.46). Sincg; : 9 — R™ ! is a bilipschitz map and; = ¢;(99Q) by (A.1.19),
the area formula implies (see [26, §8 and §12]) that for any measurableseéx?

(A.1.84) H™ (65(A)) = / J6;(Q)dH"(Q),

A

and any measurable function of, g,

(A.1.85) / gJopjdH" = / g9(¢; (X)) dH™(X).
a9 2Q;
(A.1.45) follows from (A.1.85). This concludes the proof of Lemma A.1.2

Proof of Lemma A.1.3. ket P € 9*Q2, and letw (P) denote the inward pointing unit normal
vector tooS). Define

(A.1.86) HT(P)={Y eR""": (W (P),Y — P) >0},
(A.1.87) H™(P)={Y eR""": (W (P),Y — P)<0}
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By Corollary 1 in Section 5.7 in [7] we have that

HHY(B(P,r) N QN H-(P))

(A.1.88) lim s =0
and

n+1 c +
(A.1.89) Jig L BENNEAHTP))

r—0 pntl

We shall prove that given > 0 there isr > 0 so that ifQ € 022N B(P,r) then

(A.1.90) ‘<W (P), %N <e.

Our proof proceeds by contradiction. First assume that there i€, 1) so that for eachn € N,
there isQ,, € 92N B(P, L) so that{@ (P), Q. — P) > £|Q., — P| then

(A.1.91) B(Qm,e|P —Qm|) CH"(P)NB(P,2|P — Qnl)

and
(A.1.92) B(Qm,elP — Qu|) NQ°C HH(P)NQ° N B(P,2|P — Qun)).
Since)¢ satisfies the corkscrew condition for evenye N

H" 1 (B(Qms P — Qm|) N1 Q°)
|P_Qm|n+1

(A.1.93) > Cpeth

On the other hand (A.1.89) implies that

(A.1.94) g ETHHA(P)N QN B(P 2P = Qm)

=0.
m— 00 |P— Qm|n+1

Thus combining (A.1.92), (A.1.93) and (A.1.94) we obtain a contradiction. Thus give
there isr; > 0 so thatif@Q € 902N B(P,r1) then(® (P), P — Q) < ¢|P — Q. In a similar way
we prove that there exist > 0 so thatifQ € 00N B(P,r2) then(w (P),P—Q) > —¢|P—-Q)|.
Therefore giverr > 0 there exists > 0 so that forr < rg

1
(A.1.95) - sup dist (Q, TpoQ2N B(P, r)) <e.
T QedQnB(P,r)

Sincedf? is §-Reifenberg flat, combining (1.8) and (A.1.95) we have that-farr,

1
(A.1.96) ;D[@QHB(P, ), TpOQAN B(P,r)] <46 +e.
Since( satisfies the separation property from (A.1.96) we deduce th& ol 0 N B(P,r)
andr < 2 there exists) € 92N B(P,r) so that ifII denotes the orthogonal projection from
R+ ontoTpoQ 11(Q) = X, which implies
(A197) [Q-X|=|(Q-X, 7 (P))|=(Q—P, 7 (P))|<elP-Q|<er.
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Combining (A.1.95) and (A.1.97) we conclude that giver 0 there existss > 0 so that for
rs

(A.1.98) 1D[anB(P, r), Tpd2N B(P,r)] <e.

Letj > 1 be large enough so that; < s, and let

13
|[Pji = Pl < s

there existsX;; € TpoQ2 N B(P, ;) so that
|Pji — Xji| <er;.

Let Q € 9Q N B(Pji,r;) C 02 N B(P,ilr)), there isX € TpoQ N B(P,ilr;) so that
|Q — X| <eilr;. Note that

21
YZX—in—l—PjiETpaQ—in+le, |Q Y|< €T7,
and either

17
|Y—Pj1‘|<7’j or TJ<|Y—sz|—|X—Xﬂ|<|X—Q|+|Q—Pﬂ|<<1+z€)7"g

If |Y—Pji|<7‘j let
Z=11-— ) (Y_Pji)+Pji, ZETPaQ—in+Pji,
R Pji

41
4

r; 17 17
|Y PJ1| (1+ 1 ><(1_5E)(1+Z€>rj<rj

for e > 0 small enough. Hence we have shown that €pr= 02 N B(Pj;,r;) there exists
Z € (TpoQ — Xj; + Pj;) N B(Pj;,rj) and such thal@Q — Z| < 1ler;. The same argument
used to prove (A.1.98) ensures that f&; — P| < £2r; and5r; < s

21
|Z—Q|<|Z—Y|+|Y—Q|<5€Tj+za7"g:

E’I’j,
and

1Z — Pyl =1

(A.1.99) : [0Q N B(Pyi,r5), (TpdQ — Xji + Pji) N B(Pji,r;)] < 1le.

J

Since L(P;;,r;) is defined to be the best approximating plane)fo at P;; at radiusr; we
deduce from (A.1.99) that for > 0 small enough and large enough depending ar> 0, if

|P — Pj;| < Lr; then|mj; — 7 (P)| < Cpe. Hence
lim sup ‘n—”} —W(P)‘:o7

J—oo ‘P PJl|< 1 7
which concludes the proof of Lemma A.1.30
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This also concludes the construction of the sequence of good approximating domains for
Reifenberg flat chord arc domains.

PROPOSITION A.1.1. —-Let2 Cc R"! be ad-Reifenberg flat chord arc domain. Letdenote
the Green'’s function of2, and leth denote the corresponding Poisson kernel. Assume that
h e L% (do). Let F be the non-tangential limit o¥u, F € L{ (dw™) for X € Q. ThenH"

loc loc

a.e.Q €909
(A.1.100) Q)= (F(Q), 7 (Q)),

where7 denote the inward pointing unit normal.

Proof of Proposition A.1.1. We prove that (A.1.100) holds féi"™ a.e.Q € 92 by showing
thatit holds forH™ a.e.Q € 90N K, for any compact sek’ c R"*!. We do this by showing that
for suchK C R™*! there existsk > 0 so that (A.1.100) holds fok" a.e.Q € 9Q N B(Qo, R)
whenQ € K. For K C R*™!, let R > 0 be as chosen at the beginning of the appendix (and
so thatA ¢ B(Q,4R) if necessary), le)o € 9Q N K, and lety € C°(B(Qo, R)). (A.1.20)
ensures that

(A.1.101) /cp(Q)h(Q) dH" = /uAcpz lim [ ulep.

j—oo

a0 Q Q;

SinceQ; N B(Qo, 2&) C QN B(Qo, 2£) w is harmonic orf2; N B(Qo, 2&), Green’s theorem
ensures that

(A.1.102) /uAcpz /(mw,m-ww,m)mn.

By (A.1.42) we know that ifQ); € 09, dist(Q;,00) < ak,r;, which implies by Lemma 4.1
in [14] that

(A.1.103) u(@j) < c(%) sup  u.
B(Q,%32)
Thus
(A.1.104) lim /u(Vg@,?TﬂdH” =0.
jﬂooaﬂj

Sinceg; is a smooth bilipschitz map di" ! andi; is a measurable function af) (9€2) = 9%
thenm; o ¢, is a measurable function @ and (A.1.85) implies that

[ etvumyan
%,

(A.1.105) =/<P(¢j(Q))<VU(¢j(Q))JT}(¢j(Q))>J¢j(Q)dH"(Q)-
o0
Note that by (A.1.40) ifQ € B(Qo, R)

(A.1.106) dist (¢;(Q),00) < [¢;(Q) — Q| < Kyrj.

By (A.1.63) there exist®); € 002 so thai@ — Pj;| < r;(1+2v/a) and(¢;(Q) — Py, 7ji ) = §7;
where7;; = T (P, (1 + 2y/a)r;). Let a be so thay/a < 1. If 7;] = 7 (Pj;,2r;) then
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|75 — 51| < Cy0, and ford > 0 small with respect tax > 0

(A.1.107) (65(Q) — P, mj ) > %

Tj.
Combining (1.9) and (1.10) we have that
(A.1.108) QN B(Py,2r;) C {x € B(Pj,2r;),|(x — P, 751 )| <46}

From (A.1.107) and (A.1.108) we deduce that

(A.1.109) d(6;(Q), 02N B(Py,2r;)) > (% —46)717--

SinceQ € B(Pj;,3r;), anda < 3 we conclude from (A.1.106) and (A.1.109) that fosmall
enoughid < %

« ar; .
(AlllO) E’I’j < |¢3(Q) — Q‘ < KnTj and 1_6J < dlSt(gf)j(Q),aQ) < KnTj.

Thus ¢;(Q) approaches) non-tangentially asj — oo, in particular ¢;(Q) € I'3(Q) for
B =16K,/a, wherel'g(Q) = {X € Q: | X — Q| < fdist(X,00)}. Hence using the result
in Lemma 3.1, (A.1.46), (A.1.82) and (A.1.110) we have thatffra.e.Q) € 02

(A1.111) ©(6;(Q))(Vu(;(Q)), 7 (¢5(Q)))J9;(Q) — w(Q)(F(Q), T (Q))

J—

Since
sup |Vu(X)| < CM(h)(Q)

Xelp(Q), 6(X)<e
whereM,(h) € L (do) (see proof of Lemma 3.1), anflp; (Q) < 1 + C,« by (A.1.80), the

Lebesgue dominated convergence theorem ensures that

/ (63 Q) (Vu(65(Q)), 7 (65(Q))) T (Q) dH"(Q)

o0

(A.1.112) — [ 9(Q)(F(Q), 7 (Q)).

Jj—o0

o0
Combining (A.1.101), (A.1.102), (A.1.104), (A.1.105) and (A.1.112) we have that for all
p € CX(B(Qo, R))

(A.1.113) /w(Q)h(Q)dH”(Q):/w(Q)(F(Q%W(QDdH”(Q),

o0 [219]

which implies that forH™ a.e.QQ € 92 N B(Qo, R)

(A.1.114) Q)= (F(Q), T (Q))-

This concludes the proof of Proposition A.1.10
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A.2. Behavior of the tangential components of non-tangential limits

The goal of this section is to show that almost everywher@@rhe tangential components
of F' (the non-tangential limit oV, whereu denotes either the Green’s function with pole
at infinity or with pole atA) are zero. The original proof of this fact made use of the
parameterizations for chord-arch surfaces with small constant constructed by Semmes in [24].
In conversations with G. David he pointed out that there was a much simpler proof. The proof
presented here is due to him. The authors are very grateful to him for this contribution. Before
starting the proof we need to specify the properties satisfied by the piat®*(2 for which
we can prove thaf'(Q) — (F(Q), 7 (Q))™ (Q) = 0. Recall that forH™ a.e.Q € 9*Q2, Vu
converges non-tangentially #6(Q); i.e.

(A.2.1) FQ= Jim Vu(X),
Xer(Q)

herel'(@)) denotes a non-tangential cone with verggx(We do not specify the “angle” since it
does not play arole.) Létbe 1 ifu is the Green’s function with pole at infinity, and Idbe @
if u is the Green’s function with pole at. Consider the non-tangential maximal functiorNof

atQ

(A.2.2) NVu(@)=  sup  [Vu(X)|<CM(h)(Q)
XeT(Q), 6(X)<i

by (3.10). Moreover sincé € L (do) thenM;(h) € L2, (do) and sSoN,Vu € L% (do) (see

loc loc loc

(3.12)). Thus forH™ a.e.QQ € 90 N;Vu(Q) < oo and

r—0

(A.2.3) lim f |NiVu(P) — N;Vu(Q)|dH™(P) =0
B(Q,r)NdQ

which implies, sincéf2 is Ahlfors regular, that fot{™ a.e.QQ € 99

(A.2.4) lim %H”({P € B(Q,r) N oYk NiVu(P) >2N,Vu(Q)}) =0.
In particular
(A.2.5) lin}J 8 (r)=0

where we set

(A.2.6) SL(r) = T%H"({P € B(Q,2r) N 0Q: NiVu(P) > 2N,Vu(Q)}).
Note also that foe > 0 andH"” a.e.qQ € 92

(A.2.7) lim 6.(r) = 0

where we set

(A.2.8) 5e(r) = %H"({P € B(Q,2r)N9Q; |F(P) — F(Q)| >¢}).
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In order to do the proof we need to recall the proof of Egoroff’s theorem, which asserigdhat
converges uniformly td” on large sets. For al > 0 and! > 0 define

(A2.9) H(l,e)={PedQ: |F(P)— Vu(X)| <eforall X e T(Q) with §(X) <1}

where the existence of the limit(P) is part of the definition.

Because of (A.2.1) we know that for eaeh> 0 H™ a.e.Q € 99 lies in someH(l,¢).
Therefore given any > 0 we can find = I(e, n) so thatH™(0Q\H (I(e,n),€)) < n. We apply
this toe,, = 27", n,, = 27" 15, for n > 0. We get small numbers, =1(27",27"15). Define

(A.2.10) E(m)= ) H(ln,27").
n>=1
Then
(A.2.11) H"(OQ\E(n) <> H"(00\H (1,,27")) <> 27" 'n <,

while (A.2.10) and the definition (A.2.9) ensure uniform convergenc®ofX) in I'(Q) for
Q € E(n). Note also that

(A.2.12) H" (aﬂ\ U E(n)> =0.
n>0
Thus forH™ a.e.Q € 0*Q), @ is a density point for som&(n). This means that if we set
(A.2.13) §'(r) = 37 (09 1 B(Q.2r)\E(n))
T
then
(A.2.14) lim 8" (r)=0.

We are now ready to prove the following statement.

PROPOSITION A.2.2. —Let2 C R"*! be ad-Reifenberg flat chord-arc domain. Letdenote
the Green'’s function df (either with pole atA or at infinity) and leth denote the corresponding
Poisson kernel. Assume that L2 (do).

loc

Let F be the non-tangential limit ¥ u, ' € L{ .(dw™) for X € Q. ThenH" a.e.Q € 9N

(A.2.15) F(Q)=hQ)T (Q)

where® denotes the inward pointing unit normal.

Proof. —Givene > 0, let Qo € 9*Q be such that (A.2.4), (A.1.95), (A.2.7) and (A.2.14) are
satisfied. Sinc&) € 0*(2, (A.1.95) ensures

1
(A.2.16) lim = sup  dist(Q, 7,002 N B(Qo,2r)) =0.
T T QedNNB(Qo,2r)

Let/(r) be a non-negative function satisfying

(A.2.17) 1im 1) g

r—0 7
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T, 09

(A.2.18) sup dist (Q, T, 00 N B(Qo,2r)) < U(r),
QEINNB(Qo,2r)
and
H™" (02N B(Q,1(r))) =2 [65 (r) +6L(r) + 6”(7‘)] r™
(A.2.19) for all @ € 9Q N B(Qo, 2r).

It is possible to have (A.2.17), (A.2.18) and (A.2.19) simultaneously because (A.2.5), (A.2.7)
and (A.2.14) hold andf2 is Ahlfors regular.

We now define a dis®(r) which is parallel tal'p, 09, has radiug, lies in Q, “just above
Qo" at distance%(]ol(r) from Qo, where() is a large constant to be specified shortly. By “just

aboveQ,” we mean that ifr denotes the orthogonal projection orfig, 02 thenm(Qo) = Qo

whereQ, is the center o (r).
The condition orCy, (and on the “aperture” of the NTA con&%(Q) at the same time) is that

if y € D(r) and@ € 92N B(Qo, 2r) are such that
(A.2.20) |7(y) — m(Q)|<2l(r), then

D(r)NB(y,l(r)) cT(Q)N{X e R §(X) <1} for Il > Col(r).
The general idea of the argument is as follows. We take random pgings of D(r), and
estimate(F (Qo),y2 — y1) in terms of the function:, and in particularu(ys) — u(y1). We

will need the following lemma whose proof we postpone until after we finish the proof of
Proposition A.2.2.

LEMMA A.2.4. —Under the assumptions aboverif- 0 is small enough, then
(A.2.21) lu(y)| < CNiVu(Qo)l(r) forye D(r).
Define foryy,y2 € D(r)

(A.2.22) R(y1,y2) = u(y2) —u(y1) — (F(Qo),y2 — y1)-

4€ SERIE— TOME 36 — 2003 -N° 3



REIFENBERG FLAT CHORD ARC DOMAINS 387

Since
1

(A.2.23) u(y2) —u(yr) / (Vu(yr +t(y2 —v1)),y2 — y1) dt
0

we have that

1
(A.2.24) |R(y1,2)| < |y2—y1|/‘Vu y1+t(y2 — 1)) — F(Qo)]| dt.

It is enough to only look at the average

(A.2.25) I(r) =1 / f!myl,yz)!dyldyz,

r

D(r) D(r)

where we integrate against Lebesgue measure. Using Fubini and combining (A.2.24) and
(A.2.25) we have that

(A2.26) I(r)< \TW f / / i 1/><D<r> (y1 + pw)

D(rysn-1 0
X ‘Vu Y+ sw) — F(Qo)| ds dp dw dy
[Vu(X) — F(Qo)|
< dX dpd
Tn+1 f/ / ly1 — X[ pay1
D(r) 0 D(y1,p)ND(r)
<G f [T FQ
r lyr — X"
D(r D(r)
dy1
< dX
T"*l / [Vu(x @)l / | X =g
D(r) D(r)
<Gy / |Vu(X) — F(Qo)|dX
D(r)

In the previous computatioP(y;, p) denotes the intersection of the b&l(y,, p) and the plane
parallel toTp, 052 which lies at dlstancé Col(r) from Qo.
Next we claim that

(A.2.27) |Vu(y) — F(Qo)| <2¢ forye D(r).

In fact lety € D(r) be given. Sincé is a Reifenberg flat domain using the separation property
it is easy to show that there exist¥(y) € 9Q N B(Qo,2r) such thatr(Q(y)) = 7 (y). Let
B(y) =00QnN B(Q(y),l(r)) with [(r) as before. We want to choose a paiht B(y) carefully

in order to obtain (A.2.27) by estimating

(A.2.28) [Vu(y) = F(Qo)| < [Vuly) - F(Q)| + [F(Q) — F(Qo)|-
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Because of (A.2.19) (i.e. by our choicelgf))

(A.2.29) H™(B(y)) =2(8-(r) + 6" (r))r".

If we compare with the definitions (A.2.8) and (A.2.13) we see that we can choose points
Q € B(y) such that

(A.2.30) |F(Q)— F(Qo)|<e and Qe E(n).

Recall the definitions established in (A.2.9) and (A.2.10), the fact@hatE(n) implies that
Q€ H(l,,27™) for all n € N. In particular choose so large tha2~—" < ¢, and by (A.2.9) we
have that

(A.2.31) |Vu(X) - F(Q)| <27 <e for X e T(Q) with §(X) <1,

Note that (A.2.17) ensures that fer small enoughi(r) < {,, and therefore fory € D(r),
y € T(Q) by (A.2.20) and

(A.2.32) |Vu(y) — F(Q)| <27 <,

which combined with (A.2.30) proves (A.2.27). From (A.2.26) and (A.2.27) we deduce that
I(r) < Ce for r small. Because of the definition d{r) (see (A.2.25)) this means that for
small

(A.2.33) f f ‘R(yl,yg)‘ dyy dys < Cer.

D(r) D(r)
Using (A.2.22), the fact that forsmall, |u(y)| < CNi(Vu(Qo))l(r) < er (by Lemma A.2.4 and
becausé@ tends to 0 as tends to O (see (A.2.17))) and (A.2.33) we obtain that

(A.2.34) f f [(F(Qo),y2 — y1)| dy1 dya < Cer-
D(r) D(r)
From this it is easy to deduce that
(A.2.35) [(F(Qo),v)| < Celv| forallve Ty,00.

Since (A.2.35) holds for an arbitraey> 0, we conclude thatF(Qo),v) = 0 for all v € T, 092
which proves (A.2.15). O

Proof of Lemma A.2.4.ket y € D(r), let Q(y) € 9Q N B(Qo,2r) be such that
m(Q(y)) =7(y), and letB(y) = 02 N B(Q(y),!(r)). We know from (A.2.20) that

(A.2.36) if Qe B(y) thenyeT(Q)andd(y) < Col(r).
Also because of (2.10) we know that™(B(y)) > 26.(r)r™. Using the definition (A.2.6) we
see that we can find point8 € B(y) so thatN;Vu(P) < 2N;Vu(Qo). Let us choose such
P € B(y). Sincef? is ad-Reifenberg flat domain, by [14, Lemma 4.4] we have that

(A.2.37) u(y) < Cu(A(P,Col(r))),

where A = A(P,Cyl(r)) € T'(P), andCol(r)/4 < 6(A) < Col(r). By (A.2.36) and using the
fact thatQ is a J-Reifenberg flat domain, we know that there exists a pathI'(P); with
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Sup y e, 0(X) < Col(r) joining A(P, Col(r)) to A(P, Coél(r)), with length
¥ < CCol(r) < C'I(r).
Integrating along this path we have

w(A(P,Col(r)) < / IVul() dH (¢) + u(A(P, Codl(r))

CU(r)Negry Vu(P) +u(A(P,Codl(r)))
C

<
< CU(r)N,;Vu(P) + u(A(P,Codl(r))),

(A.2.38)

for  small enough becaus#!(r) becomes much smaller thanLemma 4.1 in [14] combined
with Harnack’s inequality ensures that

(A.2.39) u(A(P,Codl(r))) < C6*u(A(P,Col(r))).

Therefore combining (A.2.37), (A.2.38) and (A.2.39), and given our choide wk obtain (for
r small)

(A.2.40) u(y) < CU(r)NiVu(Qo) forye D(r). O
A.3. Rellich’s identity for chord-arc domains

We use the machinery introduced at the beginning of this appendix to show that Rellich’s
identity holds for chord arc domains with small constant or for Reifenberg flat chord arc domains
satisfyinglog h € VMO(992). We assume th&? c R"*! is a bounded, chord arc domain (or
(60, 00)-chord arc domain) witldy > 0 small enough to ensure that Corollary 5.2 (or Corollary
5.1) in [18] holds. Here, > 2.

LEMMA A.3.1.- Let() be a bounded-chord arc domain or g4, co)-chord arc domain for
§ < do or a chord arc domain so thabgh € VMO(9Q). Let A € Q, and letw” denote the
dw?

harmonic measure @2 with pole atA. Then ifk4 = %7,

w31 - @yl = [B@@- T Q)o@
[519)

wherea,, denotes the surface area of the unit spher®ih™!, and 7' (Q) denotes the inward
pointing unit normal.

Proof. —Let R < §(A)/8 and@y € 902 by Lemmata A.1.2 and A.1.Q can be approximated
by a sequenc€;} of interior chord arc domains satisfying (A.1.20), (A.1.21), (A.1.44),
(A.1.45) and (A.1.46). Lep € C*(B(Qo, R)), for Q € 00 N B(Qo, R) let

a;j(Q)) = Q; — A—(Qj — A, 7} (Q)))7; (@),
where@; = ¢;(Q) with ¢; as defined in (A.1.10) for some < «,, (v, as in Lemma A.1.2).
Herer; (Q;) denotes the inward pointing unit normalde, .
As in [14] (see proof of Main Identity) we look at the expression
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[ (964,007 (@) (@), VG4, @) (@) art”

a9,

= [ (V64,07 (@)@ — 4. T6(4.0)4(Q) d"

a9

(A.3.2) —/<VG(A7QJ')JT§(QJ‘)>2<QJ‘—AJTJ)'(Qj)><P(Qj)dH"-

8%

Lemma 3.2 guarantees that faf* a.e.QQ € 99

(A.3.3) (VG(A,Q)),m; (Q))) = (VG(A,6;(Q)).7; (6;(Q))) — ka(Q)

Jj—oo

(A.3.9) (a;(Q5),VG(A,Q;)) = (o (4;(Q)), VG(A,¢;(Q))) — 0.

Jj—00
Combining (A.3.3), (A.3.4) and (A.1.82) we have that féf a.e.QQ € 90
(VG(4,05(Q), 75 (65(@)) )3 (63(Q)), VG(4,6;(Q) )0(65(Q)) J65(@) — 0.
(A.3.5)

Sincesupyer, sx)< IVG(A, X)| < CMi(ka)(Q), where Mi(ka) € Lf, (do) (by our as-

sumption that < J, or thatlog h € VMO(92) combined with Theorem 2.1,

| (65(Q))| < |A—0;(Q)| < R+ 5(A),

and0 < J¢,(Q) <1+ C,d by (A.1.80), the Lebesgue dominated convergence theorem ensures
that

(A36) lim [ (VG(4,Q:).75 (Q)))(0)(Q). VE(A,@)e(Qs) "

09Q;
= lim [(VG(4,6,(Q)). 7 (¢5(Q))){;(¢5(Q)), VG (A, 6;(Q)) ) (4;(Q))
o2
xJ¢; dH" =0
and
Jim [ p(Q)(VG(A.Q).7 (@))*(Qs ~ A7 (@) dh”
29
= Jim [ o(6:(Q)(VG(4,;(@). 7 (65(Q))°
o
x (6;(Q) — A, (6;(Q)) ) J6;(Q) dH™(Q)
(A3.7) - [ @@ A7 @)@ ar,
o
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Now recall that form > 2 (see [12, Theorem 8.29] for the bounded case, and [12, Theorems 5.6,
5.13 and 9.22] for the unbounded case)

1

X = A" —ua(X)
whereu 4 is a harmonic function i, satisfying

1 1-n
UAlpq = (n _ 1)Un |X - A| log

since by (A.1.47PQ; N B(Qo, 2&) € N B(Qo, 2&)

Q—A

(A.3.9) VG(A Q) = T o Q; — AT

— Vua(Qj).

We now look at the term

/ (VG(A,Q;),7; (Q;))(Q; — A, VG(A,Q))p(Q;) dH™

99,
1 1
= <VG(Aan)a775(Qj)>W¢(Qj)dHn
8%,
(A.3.10) - / (VG(A,Q)), 1 (Q))(Qj — A, Vua(Qy))p(Qjs) dH™.
99,

Since forQ; € 99; N B(Qo, 3&),

Q) — Al 14~ Qol 1@, ~ Qol > 6(4) - XA - FUA)

Lemma 3.2, the fact thatupxcr, 5x)<¢|VG(4, X)| < CMi(ka)(Q), and the Lebesgue
dominated convergence theorem ensure that

©(Q))

i Z@J (VG(A,Q;),7; (Qj»W dH
k
(A.3.11) - Ui %@Q) dH™.
50
We now look carefully at the only remaining term, namely
(1312 [(V6(4.Q)).75 @))(Q) - A Vua(@)e(Qs) dH"
EIy)
By Lemma 3.2 and using (A.3.9) we know tidt* a.e.Q € 992,
. - A N

Jlggo Vua(6;(Q)) = —W —ka(Q)T(Q)

(A.3.13) =VF(A,Q) - ka(Q)™ (Q),
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whereFy (A, Q) =1/((n —1)0,|Q — A|"~1) denotes the fundamental solution of the Laplacian
in R™*!, n > 2. The same argument used above ensures that

lim [ (VG(A,Q;),7; (Q;))(Q; — A, Vua(Q;))e(Q;) dH"

J—

o9;

(A.3.14) = / (Q—A V(A Q) —ka(Q)T (Q))ka(Q)p(Q) dH".
o0

Combining (A.3.2), (A.3.6), (A.3.7), (A.3.10), (A.3.11) and (A.3.13) we obtain for
C>(B(Qo, R)), andQo € 99

L k(@ 2D amng) + [@@-am@)e@ i@

On |A - Q|n—1
o0 o0

(A.3.15) =— / (Q—A V(A Q) —ka(Q)T (Q)ka(Q)p(Q) dH".
o0

Taking a partition of unity for a neighborhood @f2, and adding all the terms (corresponding to
(A.3.15)) we obtain

+ [@ G+ [ Q- @)
o0

(A3.16) —— [(@- A VR0 - k(@7 @)ha(@art"
o0

We would like to remark that in the unbounded case Lemma 6.1 in [18], which is a purely
technical result, ensures that all the terms are finite.

Let H(X)=VFEy(A,X)—VG(A, X), H is a harmonic function it (see definition Chapter
9 of [12] if Q is unbounded), and foK™ a.e.Q € 02, H(X) converges non-tangentially to
VFy(A,Q) — ka(Q)T (Q). Note thatV(X) = (X — A, H(X)) is a harmonic function in
Q, with V(A) = 0, and such that foH™ a.e.@ € 99, V(X) converges non-tangentially to
(Q—AVFy(A,Q)—ka(Q)T (Q) € L' (dw™) forany X € Q. Theorems 8.15 and 9.23 in [12]
ensure that the functiovi defined inQ2 by

(A.3.17) T = [ (@-AVA(AQ) - ka(QT (@) d¥(Q)

o0

is a harmonic function. Moreover fak" a.e.Q € 99, V(X) converges non-tangentially
to (Q — A, VFy(A,Q) — ka(Q)™ (Q)). Therefore abusing notation slightly we have that
AV =AV =0inQandV(Q) =V(Q) for H* a.e.Q € 9.

Our next goal is to show that there exigts L' (dw) so thatV (X) = [, f(Q) dw™(Q).
Since ) is a Reifenberg flat chord arc domain this will imply thE(Q) = f(Q) H" a.e.
Q € 09 (here again/(Q) means the non-tangential limit 6f at ?). This would guarantee
thatV(X) = V(X) for every X € €, and in particulal/(A) = V(A) = 0. To achieve this our
main tool is Lemma 8.3 in [14]. To be able to use this lemma in the bounded case, and a suitable
modification in the unbounded case, we need to study the behavior of the non-tangential maximal
function of V

(A.3.18) N.(V)(@Q)= sup [|V(X)
€l (Q)

)
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wherea > 0 and
(A.3.19) Fo0(Q)=Ta(Q)={X €Q: | X — Q| < (14 a)dist(X,00)}.

As mentioned in Lemma 8.2 of [14]x does not really play a role, in the sense that
No(V) € L' (dw?) if and only if Ng(V) € L' (dw?) for somes > 0.

Recall thatV (X) = (X — A, Vua(X)) whereuy is a harmonic function if? satisfying
G(A,X)=F(A,X)—ua(X)>0.In particular0 <ux(X) < F(A, X) forevery X € Q. Let
Y € Qthen
ua(Y)
(Y)

(A.3.20) V)| <Y = Al [Vua(Y)| < CulY — 4]

whered(Y') = dist(Y, 092).
From now on we assume thiite I', (@), and we consider several cases. First assume that
Y —Q|>2|A-Q|then)Y — A| > |Y — Q| — |Q — A| > |Q — A] and (A.3.20) yields
F(AY)
A-Q|
(A.3.21) <C ! <C !
- SOy —ARRA-Q T A= QY

If Y — Q| < 2]A — Q| using the fact that” andu 4 are harmonic, and

V(Y)|<CalY — 4]

H" (3B(O, 1)) =(n+1)wpt1
we have foRr < min{§(Y),|Y — A|}

V)= f V(X)dX

B(Y,r)
- / div((X — Ayua(X))dX — f (n + Dua(X)
B(Y,r) B(Y.r)
1 X-Y
:m / <X—A, " >uA(X)—(n—|—1)uA(Y)
OB(Y,r)
1 X-Y
OB(Y,r)
1 X-Y
_ Y—A X
+ e / < B >uA( )
OB(Y,r)
1
= — / ua(X)dX — (n+ Dua(Y)
wn+17°
OB(Y,r)
1 X-Y

8B(Y,r)

Hence
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Y — A
.

V)| <c, f w0 = uav] ax
OB(Y,r)
v -4

r

<Gy

|G(A,X) - G(A,Y)|dX
9B(Y,r)
(A.3.23) + / |F(A,X)—F(4, Y)|dX}.
OB(Y,r)
We look at each term separately. Fore 0B(Y, r),

|X _ A|n72 + |Y _ A|n72
X — A1)y — A !

<C 1 n 1
N TLT
| X —A||Y —A"~1 Y — Al X — A"
1 1
A.3.24 <Cpr <Cpr
(A.3.24) voar SO ATy — A

becauseY — A| > |[A— Q|- |Q — Y| > |A - Q|/2, by our assumptiofly’ — Q| < 2|A — Q).
Note also that this assumption implies thae B(A, 3|4 — @Q|). Standard PDE estimates plus
Harnack’s inequality ensure that

f |G(A,X) - G(AY)|dX <r sup |VG(A, Z)
OB (Y'r) ZEB(Y,r)

G(A)Y)
5(Y)
whereMas(a)(ka)(Q) = SuDgs<25(4) £ B(Q,5)n00ka(Q) do (see proof of Lemma A.3.1).

Combining (A.3.23), (A.3.24) and (A.3.25) we obtain that 1o I, (Q) if

(A.3.25) <Cr < OrMasay(ka)(Q),

Y -QI<2[A-Q|

then
v 54 et )
(A.3.26) < Cnl|Q — AlMasay(ka)(Q) + @_C%-
Combining (A.3.21) and (A.3.26) we conclude that
(A.3.27) Na(V)(Q) < Cal@ — AlMasiay (ka)(@Q) + @_O#.

If Q is a bounded chord arc domain with small enough condtarg L?(do) and therefore
Masay(ka) € L?(do). This yields the following estimate
w?(09)
1

/ Na(V)(Q) do(Q) < Ci(diam ) / Masa) (k) (@)™ (@) + Cu s

o0 [219]
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< Cu(dim) [ Mg (k) (QUba Q) + 5
o0

<Cn(diam9)/[Mza(A)(kA)(Q)}QdO’*' 5(57;_1
50

(A.3.28) gcn(diamQ)/kA(QVdaJr 5(52_1.

[219]

By (A.3.28), N, (V) € L' (dw®). Lemma 8.3 in [14] implies that (X) = [, f(Q) dw™(Q)
for every X € O and somef € L' (dw?). As explained above this ensures thgtX ) = V(X),
and in particular we have (see (A.3.16), (A.3.17) and recallthat) = 0)

1 do
w329 - [ri(@ s - [H@@- 47 @)@
" o0
If Q is an unbounded domain two things remain to be done. We first show that
N, (V) € L*(dw?), then we show there is a version of Lemma 8.3 in [14] which holds for
unbounded NTA domains. From (A.3.27) we have that

/ No(V)(Q) dw™(Q) < C / |Q — A Moy (ka)(Q) dw™ (Q)

o0 o0
(A.3.30) R A= Ql‘f‘fﬁz_l do.
[o19)

Let ©2 be an unboundedtReifenberg flat chord arc domain with< §, and

sup sup 0(Q,R) < &y
>0 Q€dN

for somed, small enough so that Corollary 5.1 and Lemma 6.1 in [18] hold. In this case, if
Qo € 90 is such thatQo — A| = §(A) taking M is large enough we obtain

kA(Q) do — kA(Q) do

Q—arT " Q-4
9 IN{|Q—Qo|<M5(A)}
ka(Q)

n _ AW/
|Q — A|n—!
0N{|Q—Qo|=M4(A)}

do

1

< e,
S 25(A)n—1

( A)nflwA (B(Qo, M5(A))) +

1

<

S 246(A)n1

(see [18] for details). If2 is a Reifenberg flat chord arc domain such thath € VMO(99),
combining Theorem 2.1, Lemma 2.3 and a similar argument to the one presented in the proof

of Lemma 6.1 in [18], we show that (A.3.31) also holds. The first term in the right hand side of
(A.3.30) requires more careful attention. Lt > 4 be a large constant to be chosen later.

| o

(A.3.31)
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J10=apnsEo@dst = [ Q= Aldbasiay (ha)(@) d
Q

00N{|Q—Qo|<M(A)}

(A3.32) " / Q= AlMas ) (ka) (@) du”
o0N{|Q—Qo|>MJ(A)}
By a similar argument to the one shown in the proof of Lemma 3.1 we have

|Q — A[Mas(ay(ka)(Q)ka(Q) do
OON{|Q—Qo|<MJ(A)}

< (M +1)6(A) / Mas(ay(ka)*(Q) do
DQNB(Qo, M5(A)

(A.3.33) < (M +1)5(A) / 2(Q) do(Q).
99N B(Qo,(M+2)5(A))

Covering B(Qo, (M + 2)5(A)) by balls {B(Qs, S 1y with Qi € 99 Qi — Qy] > 53,
whereN is large enough, and using the fact thet is a doubling measure, we deduce that

k
o(Q) < k2 do

99QNB(Qo,(M+2)5(A)) To0NB(Q;, XA

a3 (smnn(0. 1)

=0

<Onaii’§n§;{“<3<%‘“%)>}
k

N” N 5(A)
< N
\0"6(4)71 i:()w <B<Q“ N >

4(B(Qo, (M +3)3(A)))

N———

| p——

\
-
b
QU
Q

| I

[V}

<C
SOt

N
3(A)"’
(see Corollary 5.1 in [18] and its proof for more details).
We now look at the second term in the right hand side of (A.3.32).

(A.3.34) <Ch

|Q — A|Mas(a)(ka)(Q)ka(Q)

00N{|Q—Qo|>M5(A)}

o0

- / 1Q — AlMas ) (k) (Q)kA(Q) do
=09 M6(4)<IQ—Qo| <27+ M(A)
(A.3.35) <2) 2 MJ(A) / Masay(ka)(Q)ka(Q) do.
1=0

2" M6 (A)K|Q—Qo|<2T1 MS(A)
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As in the proof of Lemma 6.1 in [18] we look at each term

Masay(ka)(Q)ka(Q)do
2tM§(A)K|Q—Qo| <21+ M(A)

separately.

Let s = §(A4), andoQ N B(Q,r) = A(r,Q). For Q € A2 Ms,Qo)\A(2°M s,Qo), we
have|Q — A| > |Q — Qo| — |Qo — A| > 271 M s. CoverA (21 M s, Qo) \A(2: M s, Qo) by balls
A(pi,Q5), Qj € A2 M's,Qo)\A(2°M s, Qo) and such that the ball& (4, Q;) are disjoint.
Assume thap; > 0 is such thatVp; = 2:~' M s, whereN = 2N, > 2, and Ny is as in Corollary
5.10r5.2in[18] or as in Lemma 2.3 as needed. Note thatQ\ B(Np;, Q;), and

Gamay [49) <mmpay [ #e

Api,Qj) Api,Qj)

(A.3.36)

Recall that, since)) is Ahlfors regular, there exist§’ > 1 depending only om and the
Ahlfors regularity constants such thatA (p;, Q;)) = C(n)~!p*. Moreover the fact tha is an
unbounded NTA domain, with uniform constants, guarantees.tfas uniformly doubling on
IQN{|Q — Qo| = Ms}.

Therefore the previous inequality implies that

Mas(ka)(@Q)ka(Q)do

20 Ms<|Q—Qo| <21+ Ms

< [ mm@u@d<y [ K@

T Api,Qy) I A(pit2s,Q;)
wA(A(2p:,Q5))
< Z / k2 (Q) do < 42 mw*‘(&?m, Q)
T A@2pi,Q)) ’

<Cp; " zj:w“ (Api,Qy)) <Cp; " Zj:w“‘ (A(%,Qj))

(A337) < Cp;mw? (A (2”1Ms + 2, Qo) \a (2iMs -2 Qo>) .

Note thatu™ (A (211 Ms + 2 Ms )\ A(2'Ms — 2—Ms @) is a non-negative harmonic
function in(2, which vanishes o3 (2: M s — 21*]1\[1\45 , Qo) N 0N, and whose supremumis Thus
Lemmata 4.9 and 4.11 in [14] imply that

- 2i-1 701 g ) 2i-17fg
A i+1 7
w (A(? Ms + ,QO)\A(2 Ms — ,Qo>)

(A.3.38) <c< |4 = Qo )agc*( L >a.

2105 — E_Ms 2:M
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Combining (A.3.37) and (A.3.38) we obtain

(A3.39) / Ma () (@ka(@ o <o (57 )

2! Ms<|Q—Qo|<21H1 Ms
Thus (A.3.35) and (A.3.39) yield

|Q — A|Mas(ka)(Q)kA(Q) do

021{|Q—Qo|>Mss}

<2021+1Mspi_"< , )
pard 2M

< i+l _ .
<2 02 MS(zHMs) (21M)

=0
—(n—-1) = 1
S
(A.3.40) <C A iTa Z; Sin—1ta)’

Combining (A.3.32), (A.3.33), (A.3.34) and (A.3.40) we have fdr=2N = 4N,

/ |Q — A|Masay(k) a(Q) dw”
o0

M 1 1
<
= Oé(A)n—l + OMn—1+a §(A)n—l
1
(A.3.41) Csar

Putting together (A.3.30), (A.3.31) and (A.3.41) we conclude tiatV’) € L' (dw?). LetQ be
an unbounded NTA domain and let

(A.3.42) H(Q,dw?) = {u harmonic inQ; N, (U) € L' (dw?)}.

LEMMA A.3.2 ([14], Lemma 8.3). df u € H'(Q, dw?) then there exist§ € L' (dw”) with
w(X) = [y, f(Q)dw* (Q) forall X € Q.

Proof. —It follows the steps of the proof of Lemma 8.3 in [14]. It relies on the construction
of bounded sawtooth domains insif¥e which exhausf2. In what follows we state the results
from [14] that are needed to prove Lemma A.3.2. Although the proofs there are only ddne for
bounded, since the arguments are purely geometric they can be translated to the unbounded case
without any problem.

LEMMA A.3.3 ([14], Lemma 6.3).—For any o > 0 there exist3,+v > 0 such that for
Qo € 09, s > 0 and any bounded closed setC 9 N B(Qo, s) there exist an NTA domain
Qr and constantg’;, C> > 0 so that

(A.3.43) 0NN, = F

(A.3.44) U T4.2(Q)n B(Qo, C1s) cr C | ] TpalQ) N B(Qo, Cas),
QEF QEF
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(A.3.45) there existsX, € Qr so thatdist(Xg, 9Qr) ~ s.
Moreoverwq andwq,. are mutually absolutely continuous @n

To prove Lemma A.3.2 note that, sindg, (u) € L' (dw?), u has a non-tangential limjt for
w? a.e.Q €09, andf € L' (dw?). Choose3 associated ta as in Lemma A.3.3. Fok > 0, let
A > 0 be sothat (90\B(Qo, \)) < 1/A2. Let F\ = B(Qo, \)N{Q € 99; Ns(u)(Q) < A} for
Qo € 02 so thati(A) = |Qo — A|. Construct the sawtooth regiél), = Qp, asin LemmaA.3.3.
In particularA € Qy, Qx CUgep, I's.0(@) N B(Qo,C2)), and|u| < X on . As in Lemma
5.15 in [14],w{ (0Q)\ Fy) < Mw?(9Q\Fy) with M independent of and the(2,’s increase
to 2. By Lemma 8.3 and Remark 5.12 in [14] there exiftss L>°(dw{!) so that forX € Q,,
u(X) = fam I dwf. Sincew;4 andw* are mutually absolutely continuous @, it follows

thatf = f\ wy a.e.Q € Fy. ForX € Q, N B(Qo, R) with R > 25(A), we have thatY andwf
are mutually absolutely continuous. For su€h

(A.3.46) u(X) = / £(Q)dwX(Q) + / 1(Q) d (Q),
Fy

BQ)\\F)\

and by Theorem 7.1 and its corollary in [14] (see Theorem 3.1 in [18]) we have

Q) dw (Q) < Awy (OUN\Fy)
OO Fy

< Cx . rR AW (O F)
< MCx p ™ (ON\Fy)
< Cx, M w? (0Q\B(Qo, ) + w? (B(Qo, M\ F») }

% =+ CX,R)\LUA (E(Qo, )\)\F)\)

1
(A.3.47) <Cx.ry+Cx.r / Nj(u)(Q) dw™(Q).
B(Qo,\)N{N5(u)(Q)>A}
SinceN, (u) € L*(dw?) and N, (u) controlsNg(u) we have that forX € B(Qo, R) N2y

<Cx.r

(A.3.48) lim / MAQ)dwst =

hence forX € B(Qo,R) N

(A.3.49) u(X)=lim [ £(Q) dwst.

Arguing as in the proof of Theorem 5.14 in [14] we show that for evErg B(Qo, R) N Q
(A3.50) u(X) = / 1(Q)dX(Q).
o0

SinceR > 26(A) is arbitrary, Lemma A.3.2 is establishedd
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We conclude the proof of Rellich’s identity in the unbounded case by noting that since
N, (V) € L' (dw?) by Lemma A.3.2 there exists€ L*(dw?) so that

V(X):/f(Q)de(Q) forall X € Q.
oN

Since( is a Reifenberg flat chord arc domaii(Q) = f(Q) H™ a.e.Q € 992 which ensures
thatV(X) =V (X) for all X € , and in particulal/(A4) = V(A). Thus (A.3.1) also holds in
this case. O
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