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ABSTRACT

The Kashiwara–Vergne (KV) conjecture states the existence of solutions of a pair of equations related with the
Campbell–Baker–Hausdorff series. It was solved by Meinrenken and the first author over R, and in a formal version, by
two of the authors over a field of characteristic 0. In this paper, we give a simple and explicit formula for a map from the
set of Drinfeld associators to the set of solutions of the formal KV equations. Both sets are torsors under the actions of
prounipotent groups, and we show that this map is a morphism of torsors. When specialized to the KZ associator, our
construction yields a solution over R of the original KV conjecture.

Introduction and main results

The Kashiwara–Vergne conjecture. — The desire to understand Duflo’s theorem ac-
cording to which there is an algebra isomorphism U(g)g � S(g)g, where g is a finite
dimensional Lie algebra over k = R or C, led Kashiwara and Vergne to the following
conjecture:

Conjecture 1 (See [KV]). — For g as above, there exists a pair of Lie series A(x, y),B(x, y) ∈
f̂k

2 , such that:

(KV1) x+ y− log(eyex)= (1− e−ad x)(A(x, y))+ (ead y − 1)(B(x, y));
(KV2) A,B give convergent power series on a neighborhood of (0,0) ∈ g2;
(KV3) trg((ad x)∂xA + (ad y)∂yB) = 1

2 trg(
ad x

ead x−1 + ad y

ead y−1 − ad z

ead z−1 − 1) (identity of

analytic functions on g2 near the origin), where z = log exey and for (x, y) ∈ g2,

(∂xA)(x, y) ∈ End(g) is a �→ d

dt |t=0
A(x+ ta, y), (∂yB)(x, y)(a)= d

dt |t=0
B(x, y+

ta).

Here f̂k
2 is the topologically free k-Lie algebra with generators x, y. For k = R,

this conjecture implies an extension of the Duflo isomorphism to germs of invariant dis-
tributions on the Lie algebra g and on the corresponding Lie group G (the product on
distributions being defined by convolution). This extension was first proved in [AST],
independently of the KV conjecture.

The KV conjecture triggered the work of several authors (for a review see [T2]).
In particular, Kashiwara–Vergne settled it for solvable Lie algebras [KV], Rouvière gave
a proof for sl2 [R], and Vergne [V] and Alekseev–Meinrenken [AM1] proved it for
quadratic Lie algebras; it turns out [AT1] that in the latter case all solutions of equa-
tion (KV1) solve equation (KV3). All these constructions lead to explicit formulas for
solutions of the KV conjecture, which are both rational and independent of the Lie al-
gebra g in the considered class. The general case was settled in the positive by Alekseev–
Meinrenken [AM2] using Kontsevich’s deformation quantization theory and results in
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[T1]. The corresponding solution (A,B) is universal, i.e., independent of the Lie alge-
bra g; the series A,B are defined over R, and expressed as infinite series where coefficients
are combinations of Kontsevich integrals on configuration spaces and integrals over sim-
plices. The values of most of these coefficients remain unknown.

An approach based on associators. — In [AT2], two of the authors proposed a new
approach to the KV problem, related to the theory of Drinfeld associators [Dr]. Re-
call first that an associator with coupling constant 1 defined over a Q-ring k is a series
�(x, y) ∈ exp(f̂k

2), such that

log�(x, y)=− 1
24
[x, y] + terms of degree ≥ 2,

(1) �(y, x)=�(x, y)−1, �(x, y)ex/2�(−x− y, x)e−(x+y)/2�(y,−x− y)ey/2 = 1,

(2) �(t23, t34)�(t12+ t13, t24+ t34)�(t12, t23)=�(t12, t23+ t24)�(t13+ t23, t34),

the last relation taking place in the group exp(t̂k
4), where tk

4 is the k-Lie algebra with gen-
erators tij , 1 ≤ i �= j ≤ 4 and relations tji = tij and [tij, tik + tjk] = [tij, tkl] = 0 for i, j, k, l

distinct; t̂k
4 is its degree completion, where the generators tij have degree 1; and if a

is a pronilpotent Lie algebra, the group exp(a) is isomorphic to a, equipped with the
Campbell–Baker–Hausdorff product.

We now describe the approach of [AT2]. For any set S, let fk
S be the free k-Lie

algebra generated by S and f̂k
S its degree completion (where elements of S have degree 1).

We define a group structure on TautS(k) := exp(f̂k
S)

S as follows: we have a map
θ : TautS(k)→ Aut(exp(f̂k

S)), given by g = (gs)s∈S �→ θ(g) = (es �→ Adgs
(es)). We set g ◦

h= k, where ks := θ(g)(hs)gs. Then θ is a group morphism.
We define a Lie algebra structure on tderk

S := (fk
S)

S by [u, v] = w, where ws =
dθ(u)(vs)− dθ(v)(us)+[us, vs], and dθ : tderk

S→Der(fk
S) maps u= (us)s∈S to dθ(u) : s �→

[us, s]. The map dθ is then a Lie algebra morphism. The degree completion ̂tder
k
S of

tderk
S is the Lie algebra of TautS(k).

The Lie algebra tk
S is presented by generators tss′ , s �= s′ ∈ S, and relations ts′s = tss′ ,

[tss′ + tss′′, ts′s′′ ] = 0, [tss′, ts′′s′′′ ] = 0 for s, . . . , s′′′ distinct. We then have an injective Lie
algebra morphism tk

S→ tderk
S , taking tss′ to tss′ ∈ tderk

S defined by (tss′)s =−s′, (tss′)s′ = −s,
(tss′)s′′ = 0 for s′′ �= s, s′.

The assignments S �→ fk
S, t

k
S,TautS(k), tderk

S , can be made into contravariant
functors from the category S of sets and partially defined maps, to that of Lie alge-

bras and groups. For T ⊃ Dφ

φ→ S a morphism in S , the corresponding morphisms
are (a) φ∗ : fk

S → fk
T, s �→ ∑

t∈φ−1(s) t; (b) φ∗ : tk
S → tk

T, tss′ �→ ∑

t∈φ−1(s),t′∈φ−1(s′) ttt′ ; (c)
φ∗ : TautS(k)→ TautT(k), g = (gs)s∈S �→ gφ = h= (ht)t∈T, where ht = φ∗(gφ(t)). If φ(t) is
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undefined, then gφ(t) = 1; (d) φ∗ : tderk
S→ tderk

T is defined in the same way, with uφ(t) = 0
for φ(t) undefined.

When S = [n] = {1, . . . , n}, TautS(k), tderk
S , fk

S , tk
S are denoted simply Tautn(k),

tderk
n , fk

n , tk
n , and the generators of fk

n are denoted x1, . . . , xn. We use the nota-
tion gφ−1(1),...,φ−1(n) for gφ . Thus the maps Taut2(k)→ Taut3(k) are μ �→ μ12,3,μ2,3,
etc., where for μ = (a1(x1, x2), a2(x1, x2)), we have μ12,3 = (a1(x1 + x2, x3), a1(x1 +
x2, x3), a2(x1 + x2, x3)), μ2,3 = (1, a1(x2, x3), a2(x2, x3)), etc.

The first result of [AT2] can be formulated as follows:

Theorem 2 ([AT2], Theorem 7.1). — For every associator � over k with coupling constant

1, there exists μ� ∈Taut2(k) such that

(3) �(t12, t23) ◦μ
12,3
� ◦μ

1,2
� = μ

1,23
� ◦μ

2,3
�

holds in Taut3(k).

Let � be the ‘grading’ derivation of f̂k
2 defined by �(xi) = xi for i = 1,2. It is

proved in [AT2] that θ(μ�)−1�θ(μ�) − � ∈ Im(̂tder
k
2

dθ→ Der(f̂k
2)). Set the identifi-

cation (x, y) = (x1, x2). There is a unique pair (A�,B�) ∈ (f̂k
2)

2 such that A� (resp.,
B�) has no constant term in x (resp., y) and θ(μ�)−1�θ(μ�) − � = dθ(A�,B�). We
have dθ(A�,B�) = θ(μ�)−1 d

dt |t=1
θ(μt

�), where for μ = (a1(x, y), a2(x, y)) ∈ Taut2(k),
μt := (a1(tx, ty), a2(tx, ty)).

The next result of [AT2] is:

Theorem 3 ([AT2], Theorems 7.1 and 5.2). — (A�,B�) satisfy (KV1), and (KV3) in

which t

et−1 is replaced by a formal power series with even part t

et−1 − 1− t

2 .

Using the nonemptiness of the set of associators [Dr] and the action of a group
KV(k), the authors of [AT2] then construct joint solutions of (KV1) and (KV3).

The main results. — The automorphism μ� in Theorem 2 is constructed by an in-
ductive procedure. The first result of this paper is a simple formula for μ�:

Theorem 4. — μ� := (�(x,−x− y), e−(x+y)/2�(y,−x− y)ey/2) is a solution of (3).

The formula for μ�, as well as the proof of the identity μ�(exey) = ex+y, which is
a consequence of (3), were suggested to us by D. Calaque; a similar formula has been
discovered independently by M. Boyarchenko [Bo].

The proof of Theorem 4 sheds some light on the relations between associators and
the KV theory. It relies on the following facts:
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(a) the geometric/categorical aspect of associators, namely the fact that an associ-
ator gives rise to a compatible system of isomorphisms between completions of
pure braid groups and explicit prounipotent Lie groups;

(b) the relations between free groups and pure braid groups, more precisely the
fact that the free group with n− 1 generators Fn−1 is a normal subgroup of the
pure braid group with n strands PBn; the geometric origin of this fact lies in
the Fadell–Neuwirth fibration Cfn(C)→ Cfn−1(C), where Cfn(C)= {injective
maps [n]→C} is the configuration space of n points in C.

Let �KZ ∈ exp(f̂C
2 ) be the Knizhnik–Zamolodchikov (KZ) associator (see [Dr]); its

normalized version �̃KZ(x, y)=�KZ(
x

2π i ,
y

2π i) is an associator with coupling constant 1,
and it may be defined as the holonomy from 0 to 1 of the ordinary differential equation
G′(t)= 1

2π i(
x

t
+ y

t−1)G(t). Let (AKZ,BKZ) := (A�̃KZ
,B�̃KZ

) and define (AR,BR) as the real

part of (AKZ,BKZ) (with respect to the canonical real structure of f̂C
2 ). Then:

Theorem 5. — (1) (AR,BR) satisfies (KV1), (KV2) and (KV3) for any finite dimensional

Lie algebra g and is therefore a universal solution of the KV conjecture.

(2) For any t ∈R, (At,Bt) := (AR+ t(log(exey)− x),BR+ t(log(exey)− y)) is a universal

solution of the KV conjecture.

(3) When t =−1/4, we have (At(x, y),Bt(x, y))= (Bt(−y,−x),At(−y,−x)).

A scheme morphism M1 → SolKV. — A key ingredient of [AT2] is a Q-scheme
SolKV. Its definition relies on the notions of non-commutative divergence and Jacobian,
which we now recall.

If S is a set and k is a Q-ring, let Tk
S := U(fk

S)/[U(fk
S),U(fk

S)] be the space
spanned by all cyclic words in S; the map U(fk

S)→ Tk
S is denoted x �→ 〈x〉. The ‘non-

commutative divergence’ map j : tderk
S → Tk

S is defined by j(u) := 〈∑s∈S s∂s(us)〉 for
u= (us)s∈S, where ∂s :U(f k

S )→U(f k
S ) is defined by the identity x = ε(x)1+∑

s∈S ∂s(x)s

(where ε :U(fk
S)→ k is the counit map). The authors of [AT2] then show the existence

of a ‘non-commutative Jacobian’ map J : TautS(k)→ T̂k
S (here T̂k

S is the degree comple-
tion of Tk

S , the elements of S being of degree 1), uniquely determined by J(1) = 0 and
d

dt |t=0
J(etxg)= j(x)+ x · J(g) for g ∈ TautS(k) and x ∈̂tder

k
S (the natural action of ̂tder

k
S on

T̂k
S being understood in the last equation). Then j and J satisfy the cocycle identities

j([u, v])= u · j(v)− v · j(u) and J(h ◦ g)= J(h)+ h · J(g).
The scheme SolKV is defined by

SolKV(k) := {

μ ∈Taut2(k)|θ(μ)(exey)= ex+y

and ∃r ∈ u2k[[u]], J(μ)= 〈r(x+ y)− r(x)− r(y)〉}.
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As the map u2k[[u]] → T2, r �→ 〈r(x + y) − r(x) − r(y)〉 is injective, there is a well-
defined map Duf : SolKV(k)→ u2k[[u]], μ �→ r, which we call the Duflo map. It is
proved in [AT2] that any μ ∈ SolKV(k) gives rise to a solution (A,B) of both (KV1)
and (KV3) in which t

et−1 is replaced by t dr

dt
(t). This solution is given by the formula

dθ(A,B)= μ−1�μ− �.
Recall that the scheme M1 of associators with coupling constant 1 is defined by

M1(k)= {� ∈ exp(f̂k
2) satisfying (1) and (2)}.

Proposition 6. — The map � �→ μ� is a morphism of Q-schemes M1→ SolKV.

In order to study the relation of this morphism with the Duflo map, we recall the
following result on associators (see [DT, E], and also [Ih]): for any �(x, y) ∈M1(k), there
exists a formal power series 	�(u)= e

∑

n≥2(−1)nζ�(n)un/n, such that

(4) (1+ y∂y�(x, y))ab = 	�(x+ y)

	�(x)	�(y)
,

where ξ �→ ξ ab is the abelianization morphism k〈〈x, y〉〉 → k[[x, y]]. The values of the
ζ�(n) for n even are independent of �; they are expressed in terms of Bernoulli numbers
by ζ�(2n)=− 1

2
B2n

(2n)! for n≥ 1, so there is an identity for generating functions − 1
2(

u

eu−1 −
1+ u

2)=
∑

n≥1 ζ�(2n)u2n (we have ζ�(2)=−1/24, ζ�(4)= 1/1440, etc.)

Proposition 7. — J(μ�) = 〈log	�(x) + log	�(y) − log	�(x + y)〉, so Duf(μ�) =
− log	�. We therefore have a commutative diagram

(5)
M1(k)

��→μ�→ SolKV(k)

��→log	� ↓ ↓Duf

{r ∈ u2k[[u]]|rev(u)=− u2

24 + u4

1440 + · · · }
(−1)×−
↪→ u2k[[u]]

where rev(u) is the even part of r(u).

Torsor aspects. — Let us set

KV(k) := {

α ∈Taut2(k)|θ(α)(exey)= exey

and ∃σ ∈ u2k[[u]], J(α)= 〈σ(log(exey))− σ(x)− σ(y)〉},
and

KRV(k) := {

a ∈Taut2(k)|θ(a)(ex+y)= ex+y

and ∃s ∈ u2k[[u]], J(a)= 〈s(x+ y)− s(x)− s(y)〉};
we call KV(k) the Kashiwara–Vergne group, while KRV(k) is its graded version. As be-
fore, we will denote by Duf :KV(k)→ u2k[[u]], KRV(k)→ u2k[[u]] the maps α �→ σ ,
a �→ s.
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Proposition 8. — KV(k) and KRV(k) are subgroups of Taut2(k), and Duf :KV(k)→
u2k[[u]], KRV(k)→ u2k[[u]] are group morphisms. SolKV(k) is a torsor under the commuting left

action of KV(k) and right action of KRV(k) given by (α,μ) �→ μ ◦ α−1 and (μ, a) �→ a−1 ◦μ,

and Duf : SolKV(k)→ u2k[[u]] is a morphism of torsors.

In particular, every element of SolKV(k) gives rise to an isomorphism kv→ krv

between the Lie algebras of these groups, whose associated graded morphism is the
canonical identification gr(kv)� krv.

The prounipotent radical of the Grothendieck–Teichmüller group is

GT1(k)= {

f ∈ exp(f̂k
2)|f (y, x)= f (x, y)−1,

f (x, y)f (log e−ye−x, x)f (y, log e−ye−x)= 1,

f (ξ23, ξ34)f (log eξ12eξ13, log eξ24eξ34)f (ξ12, ξ23)

= f (ξ12, log eξ23eξ24)f (log eξ13eξ23, ξ34)
}

,

where the last equation holds in the prounipotent completion PB4(k) of the pure braid
group in four strands PB4; xij = (σj−2 · · ·σi)

−1σ 2
j−1(σj−2 · · ·σi) where σ1, σ2, σ3 are the

Artin generators of the braid group in four strands B4 and ξij = log xij (here xij is iden-
tified with its image under the canonical morphism PB4→ PB4(k) and log : PB4(k)→
Lie PB4(k) is the logarithm map, which is a bijection between a prounipotent Lie group
and its Lie algebra). It is equipped with the product (f1∗ f2)(x, y)= f1(Adf2(x,y)(x), y)f2(x, y).
Its graded version is

GRT1(k)= {

g(x, y) ∈ exp(f̂k
2)|g(y, x)g(x, y)= 1,

Adg(x,−x−y)(x)+Adg(y,−x−y)(y)= x+ y,

g(x, y)g(−x− y, x)g(y,−x− y)= 1, and g satisfies (2)
}

with product (g1 ∗ g2)(x, y)= g1(Adg2(x,y)(x), y)g2(x, y).
It is proved in [Dr] that M1(k) is a torsor under the commuting left action of

GT1(k) and right action of GRT1(k) by (f ,�) �→ (f ∗�)(x, y) := f (Ad�(x,y)(x), y)�(x, y)

and (�, g) �→ (� ∗ g)(x, y) :=�(Adg(x,y)(x), y)g(x, y).
The following Theorem 9 and Proposition 10 express the torsor properties of the

map � �→ μ�.

Theorem 9. — There are unique group morphisms GT1(k)→KV(k), f �→ α−1
f , where

αf = (f (x, log e−ye−x), f (y, log e−ye−x)),

and GRT1(k)→KRV1(k), g �→ a−1
g , where

ag(x)= (g(x,−x− y), g(y,−x− y)).
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These group morphisms are compatible with the map M1(k)→ SolKV(k), which is therefore a

morphism of torsors.

Proposition 10. — The diagram (5) is a diagram of torsors, where the sets in the lower line are

viewed as affine spaces.

In Appendix A, we show that αf satisfies the cocycle identity

(6) f (log x12, log x23) ◦ α
˜12,3

f ◦ α
1,2
f = α

˜1,23
f ◦ α

2,3
f

in Taut3(k), where for α = (α1(x1, x2), α2(x1, x2)) ∈Taut2(k), we set

α
˜12,3 := (α1(log ex1ex2, x3), α1(log ex1ex2, x3), α2(log ex1ex2, x3))

and α
˜1,23 := (α1(x1, log ex2ex3), α2(x1, log ex2ex3), α2(x1, log ex2ex3)), and x12, x23 ∈ Taut3(k)

are the images of x12 = σ 2
1 , x23 = σ 2

2 under the natural morphism PB3→ Taut3(k) (see
Proposition 19), given by x12 = (e−x2, e−x2e−x1,1) and x23 = (1, e−x3, e−x3e−x2).

The group GT1(k) admits profinite and pro-l versions, where l is a prime num-
ber. The morphism f �→ α−1

f admits variants in these setups, which satisfy analogues
of (6) (in the profinite setup, identity (6) was independently obtained by P. Lochak and
L. Schneps [LS]).

Appendix B is devoted to the study of the following problem: Theorem 4 is proved
by studying restrictions μO to free groups of morphisms μ̃O between braid groups and
their infinitesimal analogues, where O is a parenthesized word with n identical letters. We
express μO and its Jacobian using μ•(••) = μ� and 	�.

Finally, Appendix C is devoted to the computation of centralizers in infinitesimal
analogues of pure braid groups, which are used in the proof of Theorem 4.

Organization. — In Section 1, we recall the relations between associators and
1-formality isomorphisms for braid groups. In Section 2, we study the relation between
these isomorphisms. In Section 3, we recall the relations between braid and free groups.
In Section 4, we show that these isomorphisms give rise to the tangential automor-
phism μ�; using the results of Section 2, we show a key relation satisfied by μ�. This
enables us to prove Theorem 4 and Propositions 6 and 7 in Section 5. In Section 6, we
prove Proposition 8, Theorem 9 and Proposition 10 on the group and torsor aspects of
our work. In Section 7, we study the analytic aspects of our construction, which enables
us to prove Theorem 5.

1. Associators and 1-formality of braid groups

In [Dr], Drinfeld showed that associators give rise to 1-formality isomorphisms for
braid groups. This statement was reformulated by Bar-Natan in the framework of braided
monoidal categories [B]. This section is devoted to an exposition of this material.
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1.1. (Braided) (strict) monoidal categories. — Recall that a monoidal category is a cate-
gory C , equipped with a bifunctor⊗ : C×C → C , a unit object 1 and a natural constraint
aX,Y,Z ∈ IsoC((X⊗Y)⊗ Z,X⊗ (Y⊗ Z)) such that

aX,Y,Z⊗TaX⊗Y,Z,T = (idX⊗aY,Z,T)aX,Y⊗Z,T(aX,Y,Z⊗ idT).

A braiding is then a natural constraint βX,Y ∈ IsoC(X⊗Y,Y⊗X), such that

(idY⊗β±X,Z)aY,X,Z(β
±
X,Y⊗ idZ)= aY,Z,Xβ±X,Y⊗ZaX,Y,Z,

where β+X,Y = βX,Y while β−X,Y = β−1
Y,X. It is called strict if the trifunctors ⊗◦ (⊗× id) and

⊗◦ (id×⊗) : C × C × C → C coincide and aX,Y,Z = idX⊗Y⊗Z.
Let Bn be the braid group in n strands. We recall its Artin presentation: the gen-

erators are σ1, . . . , σn−1 and the relations are σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for
|i − j|> 1. Recall that the symmetric group Sn has generators s1, . . . , sn−1 and the same
relations, with the additional s2

i = 1 for i = 1, . . . , n− 1. We therefore have a morphism
Bn→Sn, σi �→ si . The pure braid group in n strands is PBn := Ker(Bn→Sn); it is the
smallest normal subgroup of Bn containing σ 2

i for i = 1, . . . , n− 1.
A braided monoidal category (b.m.c.) C then gives rise to morphisms Bn →

AutC(X⊗n), where X⊗n is defined inductively by X⊗0 = 1, X⊗n = X ⊗ X⊗n−1, given
by σi �→ a−1

i (idX⊗i−1⊗βX,X ⊗ id⊗X⊗n−1−i)ai , where ai : X⊗n→ X⊗i−1 ⊗ X⊗2 ⊗ X⊗n−1−i is
the morphism constructed from the associativity constraints (this morphism is unique by
McLane’s coherence theorem). A b.m.c. also gives rise to morphisms PBn→ AutC(X1 ⊗
. . .⊗Xn).

1.2. The categories PaB,PaCD. — In [JS], Section 2, Joyal and Street introduced
the free braided monoidal category Fb(A) generated by a small category A. For S a set,
let AS be the category with Ob(AS)= S, and

HomAS(s, t) :=
{{ids} if t = s,

∅ otherwise.

We set PaBS := Fb(AS) and for S = {•}, PaB := PaB{•}. These are the free b.m.c.’s
generated by S (resp., by one object •).

The category PaB coincides with Bar-Natan’s category of parenthesized braids [B],
which can be described explicitly as follows. Its set of objects is Par=⊔

n≥0 Parn, where
Parn is the set of parenthesizations of the word • · · · • (n letters); alternatively, the set of
planar binary trees with n leaves (we will set |O| = n for O ∈ Parn). The object with n= 0
is denoted 1. Morphisms are defined by1

PaB(O,O′) :=
{

Bn if |O| = |O′| = n,

∅ if |O| �= |O′|;
1 If C is a category and X ∈Ob C, we set C(X,X′) :=HomC (X,X′).
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FIG. 1. — Braiding in PaB

the composition is then defined using the product in Bn.
PaB is a braided monoidal category (see e.g. [JS]), where the tensor product of

objects is (n,P)⊗ (n′,P′) := (n+ n′,P ∗ P′) (where P ∗ P′ is the concatenation of paren-
thesized words, e.g. for P= •• and P′ = (••)•, P∗P′ = (••)((••)•)). The tensor product
of morphisms PaB(O1,O′1)× PaB(O2,O′2)→ PaB(O1 ⊗O2,O′1 ⊗O′2) is induced by
the juxtaposition of braids B|O1| ×B|O2| → B|O1|+|O2| (the group morphism (σi, e) �→ σi ,
(e, σj) �→ σj+|O1|). The braiding βO,O′ ∈ PaB(O⊗O′,O′ ⊗O) is the braid σn,n′ ∈ Bn+n′

where the n first strands are globally exchanged with the n′ last strands (see Figure 1); we
have σn,n′ = (σn · · ·σ1)(σn+1 · · ·σ2) · · · (σn+n′−1 · · ·σn′) (where n = |O|, n′ = |O′|). Finally,
the associativity constraint aO,O′,O′′ ∈ PaB((O⊗O′)⊗O′′,O⊗ (O′ ⊗O′′)) corresponds
to the trivial braid e ∈ B|O|+|O′|+|O′′|.

Moreover, the pair (PaB,•) is universal for pairs (C,M) of a braided monoidal
category and an object, i.e., for each such a pair, there exists a unique tensor functor
PaB→ C taking • to M.

Bar-Natan introduced another category PaCD of ‘parenthesized chord diagrams’.
It is constructed using the family of Lie algebras tk

S defined in the Introduction. Note that
the permutation group SS of S acts on tk

S by σ · tss′ = tσ(s)σ (s′). Then the Lie algebra tk
S is

graded, where tss′ has degree 1, and we denote by t̂S its degree completion. When S= [n],
we denote by tk

S , t̂k
S by tk

n , t̂k
n ; we have SS =Sn.

The category PaCD can then be described as follows. Its set of objects is Par, and

PaCD(O,O′) :=
{

exp(t̂k
n ) � Sn if |O| = |O′| = n,

∅ if |O| �= |O′|.
We define the tensor product as above at the level of objects, and by the juxtaposi-
tion map (exp t̂k

n � Sn)× (exp t̂k
n′ � Sn′)→ exp t̂k

n+n′ � Sn+n′ , ((exp x, s), (exp x′, s′)) �→
(exp(x ∗ x′), s ∗ s′), where t̂k

n × t̂k
n′ → t̂k

n+n′ , (x, x′) �→ x ∗ x′ is the Lie algebra morphism
such that tij ∗ 0 = tij and 0 ∗ ti′ j′ = tn+i′,n+j′ , and Sn ×Sn′ →Sn+n′ , (s, s′) �→ s ∗ s′ is the
group morphism such that si ∗ 1= si , 1 ∗ si′ = sn+i′ .

Every � ∈M1(k) gives rise to a structure of braided monoidal category PaCD�

on PaCD, as follows: βO,O′ = (et12/2)[n],n+[n′]sn,n′ , where n = |O|, n′ = |O′|, and sn,n′ ∈
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Sn+n′ is given by sn,n′(i) = n′ + i for i ∈ [n], sn,n′(n + i) = i for i ∈ [n′], and aO,O′,O′′ =
�(t12, t23)

[n],n+[n′],n+n′+[n′′] for n = |O|, n′ = |O′|, n′′ = |O′′|. By the universal property of
PaB, there is a unique tensor functor PaB→ PaCD�, which is the identity at the level
of objects.

1.3. Morphisms Bn → exp(t̂k
n ) � Sn, PBn → exp(t̂k

n ). — Fix � ∈M1(k). By the
universal property of PaB, there is a unique tensor functor F� : PaB→ PaCD�, induc-
ing the identity at the level of objects. So for any n≥ 1 and any O ∈Ob(PaB), |O| = n,
we get a group morphism2

F�(O)= μ̃O : Bn � PaB(O)→ PaCD�(O)= exp(t̂k
n ) � Sn,

such that

Bn

μ̃O→ exp(t̂k
n ) � Sn

↘ ↙
Sn

commutes. It follows that μ̃O restricts to a morphism

(7) μ̃O : PBn→ exp(t̂k
n ).

Let us show that the various μ̃O are all conjugated to each other. Let canO,O′ ∈
PaB(O,O′) correspond to e ∈ Bn. Then canO′,O′′ ◦ canO,O′ = canO,O′′ . Moreover, if we
denote by σO : Bn→ PaB(O) the canonical identification, then σO′(b)= canO,O′ σO(b)×
can−1

O,O′ . Let us set �O,O′ := F�(canO,O′). Then:

(1) �O,O′ ∈ exp(t̂n), �O′,O′′�O,O′ =�O,O′′ ;
(2) μ̃O′(b)=�O,O′μ̃O(b)�−1

O,O′ .

If O= •(. . . (••)) is the ‘right parenthesization’, the explicit formula for μ̃O is

μ̃O(σi)=�i,i+1,i+2...neti,i+1/2si(�
i,i+1,i+2...n)−1, i = 0, . . . , n− 1.

1.4. Prounipotent completions. — Recall that a group scheme over Q is a functor
{Q-rings} → {groups}, G(−) = (k �→ G(k)). Such a group scheme is called prounipo-
tent if there exists a pronilpotent Q-Lie algebra g, such that G(k) � exp(gk), where
gk = lim←(g/Dn(g))⊗ k, and D1(g)= g, Dn+1(g)= [g,Dn(g)]. To each finitely gener-
ated group 	, one may attach a prounipotent group scheme 	(−), equipped with a mor-
phism 	→ 	(Q), with the following universal property: any unipotent Q-group scheme
U(−) and any group morphism 	→ U(Q) give rise to a morphism 	(−)→ U(−) of

2 It C is a category and X ∈Ob C, we write C(X) := C(X,X)= EndC (X).
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prounipotent group schemes, such that the composite map 	→ 	(Q)→ U(Q) coin-
cides with 	→U(Q). The scheme 	(−) is called the prounipotent (or Malcev) comple-
tion of 	.

If S is a finite set, let FS be the free group generated by S and f̂
Q
S be the topologically

free Lie algebra generated by symbols log s, s ∈ S. Then we have an injective morphism

FS
can→ exp(f̂

Q
S ), s �→ exp(log s). If 	 is presented as 〈S|f (t), t ∈ T〉 for some map T

f→ FS,
then Lie	(−) may be presented as the quotient of f̂

Q
S by the topological ideal generated

by all log can f (t), t ∈T. In particular, we have a canonical identification Lie FS(−)� f̂
Q
S .

1.5. 1-formality isomorphisms for braid groups. — We show how the morphisms μ̃O

(see (7)) extend to isomorphisms between prounipotent completions. The prounipotent
completion of Bn relative to Bn→Sn will be denoted Bn(k,Sn); it may be constructed as
follows: Bn acts by automorphisms of PBn, hence of PBn(k); Bn(k,Sn) is defined as the
quotient of the semidirect product PBn(k) � Bn by the image of the morphism PBn→
PBn(k)�Bn, g �→ (g−1, g) (which is a normal subgroup). Then Bn(k,Sn) fits into an exact
sequence 1→ PBn(k)→ Bn(k,Sn)→Sn→ 1.

The morphisms μ̃O then give rise to isomorphisms

(8)
PBn(k)

∼→ exp(t̂k
n )↓ ↓

Bn(k,Sn)
∼→ exp(t̂k

n ) � Sn

also denoted μ̃O. When � is the KZ associator with coupling constant 2π i (see the Intro-
duction), these isomorphisms are given by Sullivan’s theory of minimal models applied
to the configuration space of n points in the complex plane. This theory computes all the
rational homotopy groups of a simply-connected Kähler manifold, but only the prounipo-
tent completion of its fundamental group in the non-simply-connected case, whence the
name ‘1-formality’ [Su].

2. Operadic properties of 1-formality isomorphisms of braid groups

In this section, we establish operadic properties of the morphisms μ̃O introduced
in Section 1.3. The operadic structure of the collection of braid groups is described by
the cabling morphisms, which we review in the following section.

2.1. Cabling morphisms. — Let n ≥ 1, m = (m1, . . . ,mn) ∈ Nn and m := |m| =
m1 + · · · + mn. For s ∈Sn, define sm ∈Sm by sm(m1 + · · · + mi−1 + j) = ms−1(1) + · · · +
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ms−1(s(i)−1) + j for any i ∈ [n] and any j ∈ [mi]. Then the diagram

[m] sm→ [m]
φm ↓ ↓φm◦s−1

[n] s→ [n]
commutes, where φm : [m]→ [n] is defined by φm(m1+ · · · +mi−1+ j)= i for any i ∈ [n]
and any j ∈ [mi]. One checks:

Lemma 11. — For s, t ∈Sn, (ts)m = tm◦s−1sm (where we view m as a map [n]→N).

Recall that for a, b ≥ 0, σa,b = (σb · · ·σ1) · · · (σa+b−1 · · ·σa) ∈ Ba+b, and that
(σ, τ ) �→ σ ∗τ is the group morphism Ba×Bb→ Ba+b, such that σi ∗1= σi for i ∈ [a−1]
and 1 ∗ σj = σa+j for j ∈ [b− 1].

Proposition 12. — There exists a unique collection of maps Bn→ Bm, σ �→ σm, such that:

(a) (σi)m = 1m1+···+mi−1 ∗σmi,mi+1 ∗1mi+2+···+mn
for any i ∈ [n] (where 1n ∈Sn is the identity

permutation);
(b) for any σ, τ ∈ Bn, (τσ )m = τm◦s−1σm, where s= im(σ ∈ Bn→Sn).

For any m, the diagram

(9)
Bn

σ �→σm→ Bm

↓ ↓
Sn

s �→sm→ Sm

commutes, and the map σ �→ σm restricts to a group morphism PBn→ PBm.

Remark 13. — The morphisms fm : PBn→ PBm can be interpreted topologically
as follows. Recall the isomorphisms PBn � π1(Cfn,Pn) where Cfn = {f : [n] → C|f is
injective}, and Pn = {f : [n] → R|f (1) < · · · < f (n)} (this is well-defined as Pn is con-
tractible). For ε > 0, define Cfεn ⊂ Cfn as Cfεn = {f |∀i �= j, |f (i) − f (j)| > ε} and let
gm : Cfεn → Cfn be the map f �→ g, where g(m1 + · · · + mi−1 + j) = f (i) + j

mi
ε. Then

gm(Pn ∩ Cfεn) ⊂ Pm, and Cfεn ⊂ Cfn is a homotopy equivalence, so the diagram of maps
Cfn ⊃ Cfεn→ Cfm induces a group morphism PBn→ PBm, which coincides with fm. The
maps fm : Bn→ Bm can be defined in a similar fashion (see Figure 2). �

Proof of Proposition 12. — This proposition could be proved topologically, following
Remark 13; however, we give an algebraic proof as it involves techniques which will be
used in Proposition 14.

Condition (b) imposes (1n)m = 1m, therefore (a) and (b) imply (σ−1
i )m = 1m1+···+mi−1 ∗

σ−1
mi+1,mi

∗ 1mi+2+···+mn
. As σ±1

i generate Bn, this equality and conditions (a) and (b) deter-
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FIG. 2. — Cabling morphisms

mine the value of σm for each σ ∈ Bn. This proves the uniqueness of the collection of
maps σ �→ σm.

Let us now prove its existence. We first recall from [JS] the construction of the
free strict braided monoidal category Fs(AS) = BS, where S is a set (the category AS is
defined in Section 1.2).

BS is small and its set of objects is Ob(BS) =⊔

k≥0 Sk ; it identifies with the semi-
group 〈S〉 freely generated by S. For w ∈ Ob(BS), we denote by |w| the index k such
that w ∈ Sk (k is the length of w). Then for w,w′ ∈ Ob(BS), we set BS(w,w′) = ∅
if |w| �= |w′|, and BS(w,w′) = Bk×Sk

Sw,w′ if |w| = |w′| = k; here Sw,w′ = {σ ∈
Sk|w ◦ σ−1 =w′} (we view w,w′ as maps [k]→ S).

The tensor product is defined at the level of objects using the semigroup law, so
w ⊗ w′ is defined by |w ⊗ w′| = |w| + |w′|, (w ⊗ w′)(i) = w(i) for i ∈ [|w|], (w ⊗
w′)(|w| + i) = w′(i) for i ∈ [|w′|]. It is defined at the level of morphisms by restricting
the map B|w| ×B|w′| → B|w|+|w′|, (σ,σ ′) �→ σ ∗ σ ′. The braiding is βw,w′ := σ|w|,|w′| ∈
BS(w⊗w′,w′ ⊗w).

When S = {•}, BS is simply denoted B; then Ob(B) = N, B(k, k′) = ∅ if k �= k′,
B(k) = Bk , k ⊗ k′ = k + k′, and the tensor product coincides with ∗ at the level of mor-
phisms.

Let now n≥ 1 and m ∈Nn. By the universal properties of B[n], there exists a unique
tensor functor Fm : B[n] → B, such that Fm(i) = mi for each i ∈ [n]. For s ∈ Sn, we set
Bs

n := Bn×Sn
{s}. Then Bn =⊔

s∈Sn
Bs

n. Define the map fm : Bn → Bm by the condition
that for any s ∈Sn, the diagram

(10)
B[n](1⊗ · · · ⊗ n, s−1(1)⊗ · · · ⊗ s−1(n))

Fm→B(m1⊗ · · · ⊗ mn,ms−1(1)⊗ · · · ⊗ ss−1(sn))

|| ||
Bs

n

fm→ Bm
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commutes. We now prove that the maps fm satisfy conditions (a) and (b). For s, t ∈Sn,

Bs
n×Bt

n =
B[n](1⊗ · · · ⊗ n,

s−11⊗ · · · ⊗ s−1n)

×B[n](1⊗ · · · ⊗ n,

t−11⊗ · · · ⊗ t−1n)

�
B[n](1⊗ · · · ⊗ n,

s−11⊗ · · · ⊗ s−1n)

×B[n](s−11⊗ · · · ⊗ s−1n,

s−1t−11⊗ · · · ⊗ s−1t−1n)

(f ,g)�→g◦f→ B[n](1⊗ · · · ⊗ n,

(ts)−11⊗ · · · ⊗ (ts)−1n)
= Bts

n

fm×fm◦s−1 ↓ ↓Fm×Fm◦s−1 ↓Fm ↓fm

Bm×Bm �
B(m1 ⊗ · · · ⊗ mn,

ms−11 ⊗ · · · ⊗ ms−1m)

×B(ms−11 ⊗ · · · ⊗ ms−1n,

ms−1t−11 ⊗ · · ·⊗
ms−1t−1n)

(f ,g)�→g◦f→
B[m](m1 ⊗ · · · ⊗ mn,

ms−1t−11 ⊗ · · ·⊗
ms−1t−1n)

= Bm

commutes, so the diagram

Bs
n×Bt

n

(σ,τ )�→τσ→ Bn

fm×fm◦σ−1 ↓ ↓fm

Bm×Bm

(σ,τ )�→τσ→ Bm

commutes. So the family of maps (fm)|m|=m satisfies condition (a). The value of fm(σi) is
obtained by a direct computation, which shows that (fm)|m|=m satisfies condition (b).

Note that the tensor functor Fm : B[n] → B factors as Fm = p ◦ Gm, where
Gm : B[n] → B[m] is defined by Gm(i) :=⊗

j∈m1+···+mi−1+[mi] j for any i ∈ [n] and p : B[m] → B
is defined by p(j)= • for any j ∈ [m]. It follows that we have a factorization of (10) as

(11)
B[n](1⊗ · · · ⊗ n, s−1(1)⊗ · · · ⊗ s−1(n))

Gm→ B[m](Gm(1)⊗ · · · ⊗Gm(n),

Gm(s−1(1))⊗ · · · ⊗Gm(s−1(n)))

p→B(m)

|| ||
Bs

n → Bsm
m → Bm

which implies that fm(Bs
n) ⊂ Bsm

m , as wanted. The commutativity of (9) and identity (b)
then imply that fm restricts to a group morphism PBn→ PBm. �

Identities (a) and (b) immediately imply that if m1 = 1, then

fm(Xi)=Xm1+···+mi−1+2 · · ·Xm1+···+mi+1

for i = 2, . . . , n, where Xi ∈ PBn is given by Xi = σi−1 · · ·σ2σ
2
1 σ2 · · ·σi−1.

2.2. A commutative diagram. — Let O ∈ Parn, and let O1, . . . ,On ∈ Par. Let
O(O1, . . . ,On) ∈ Par be obtained by replacing the object • occurring n times in O suc-
cessively by O1, . . . ,On. (For example, for O = •(••), O1 = ••, O2 = •(••), O3 = •,
O(O1,O2,O3)= (••)((•(••))•).)
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Proposition 14. — Fix � ∈M1(k). The diagram

Bn

μ̃O→ exp(t̂k
n ) � Sn

fm ↓ ↓gm

Bm

μ̃O(O1,...,On)→ exp(t̂k
m) � Sm

commutes, where gm(ex, s)= (ey, sm) with y= x[m1],m1+[m2],...,m1+···+mn−1+[mn]. In particular, we have

a commutative diagram of group morphisms

(12)
PBn

μ̃O→ exp(t̂k
n )

fm ↓ ↓gm

PBm

μ̃O(O1,...,On)→ exp(t̂k
m)

Proof. — We first recall the construction of the free b.m.c. PaBS = Fb(AS) (see Sec-
tion 1.2). Its set of objects is Ob(PaBS) :=Ob(BS)×N Par= {(w, p)||w| = |p|}; it may
be viewed as the free magma generated by S (recall that a magma is a set equipped with
a binary law and a neutral element). The morphisms are then PaBS((w, p), (w′, p′)) :=
BS(w,w′). The tensor product is defined at the level of objects by (w, p) ⊗ (w′, p′) :=
(w ⊗ w′, p⊗ p′), and may be identified with the magma product. At the level of mor-
phisms, the tensor product law PaBS((w1, p1), (w2, p2)) × PaBS((w3, p3), (w4, p4))→
PaBS((w1, p1) ⊗ (w3, p3), (w2, p2) ⊗ (w4, p4)) is defined as the tensor product law
BS(w1,w2)× BS(w3,w4)→ BS(w1 ⊗ w3,w2 ⊗ w4) of BS. The braiding constraint for
PaBS is β(w,p),(w′,p′) := βw,w′ ∈ BS(w ⊗ w′,w′ ⊗ w) = PaBS((w, p)⊗ (w′, p′), (w′, p′)⊗
(w, p)), and the associativity constraint is a(w,p),(w′,p′),(w′′,p′′) := idw⊗w′⊗w′′ ∈ BS(w ⊗ w′ ⊗
w′′)= PaBS(((w, p)⊗ (w′, p′))⊗ (w′′, p′′), (w, p)⊗ ((w′, p′)⊗ (w′′, p′′))).

For � ∈ M1(k), we then construct a b.m.c. PaCD�
S as follows. Its set of

objects is defined by Ob(PaCD�
S ) := Ob(PaBS). The morphisms are defined by

PaCD�
S ((w, p), (w′, p′)) := exp(t̂k

k ) � Sw,w′ if |w| = |w′| = k, and PaCD�
S (w,w′) = ∅

otherwise. There exists a unique b.m.c. structure on PaCD�
S , such that the tensor product

is the same as that of PaBS at the level of objects, and the functor PaCD�
S → PaCD�,

defined at the level of objects by (w, p) �→ p and at the level of morphisms by the canoni-
cal inclusion PaCD�

S ((w, p), (w′, p′))⊂ PaCD�(p, p′), is a tensor functor.
We associate a tensor functor Gm,p : PaCD�

[n] → PaCD�
[m] to the following data:

(1) a map m : [n]→N, such that m=∑n

i=1 mi ;
(2) a collection p= (pi)i∈[n], where for each i, pi ∈ Parmi

.

Gm,p is constructed as follows. At the level of objects, it induces the unique tensor map
gm,p :Ob(PaCD�

[n])→Ob(PaCD�
[m]) taking i ∈ [n] to ((m1 + · · · + mi−1 + 1, . . . ,m1 +
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· · · + mi), pi) ∈ [m]mi × Parmi
. Note that the diagram

Ob(PaCD�
[n])

gm,p→ Ob(PaCD�
[m])

↓ ↓
〈[n]〉 gm→ 〈[m]〉

commutes, where we recall that 〈S〉 is the semigroup generated by S and gm is the semi-
group morphism defined by gm(i)= (m1 + · · · + mi−1 + 1, . . . ,m1 + · · · + mi).

Let w = (w1, . . . ,wk), w′ = (w′1, . . . ,w
′
k) ∈ [n]k and p, p′ ∈ Park ; the map

PaCD�
[n]((w, p), (w′, p′))→ PaCD�

[m](gm,p(w, p), gm,p(w
′, p′))

induced by Gm,p on morphisms is determined by the condition that

PaCD�
[n]((w, p), (w′, p′))→ PaCD�

[m](gm,p(w, p), gm,p(w
′, p′))

|| ||
exp(t̂k

k ) � Sw,w′
gk
m→ exp(t̂k

k′) � Sgm(w),gm(w′)

commutes, where k′ =∑k

i=1 m(wi), and gk
m(exp x, s) = (exp y, sm(w1),...,m(wk)), where y =

x[m(w1)],...,m(w1)+···+m(wk−1)+[m(wk)]. One checks that Gm,p is a tensor functor.
There are tensor functors PaB[n] → PaCD�

[n] and PaB[m] → PaCD�
[m], uniquely

determined by the condition that they induce the identity at the level of objects. We also
have a tensor functor PaB[n] → PaB[m], uniquely determined by the condition that it
induces the map gm,p at the level of objects. Then the diagram of tensor functors

PaB[n] → PaB[m]
↓ ↓

PaCD�
[n] → PaCD�

[m]

commutes; to prove this, one checks that two tensor functors PaB[n] → PaCD�
[m] are

equal by considering the images of objects.
We also have a commutative diagram of tensor functors

PaB[m] → PaB
↓ ↓

PaCD�
[m] → PaCD�

where PaB[m] → PaB is induced by the unique map [m] → {•}, PaCD�
[m] → PaCD� is

similarly defined on objects and by the natural inclusions of the sets of morphisms.
Composing these commutative diagrams, we obtain a commutative diagram

PaB[n] → PaB
↓ ↓

PaCD�
[n] → PaCD�
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which induces a commutative diagram

PaB[n](1⊗ · · · ⊗ n, s−1(1)⊗ · · · ⊗ s−1(n)) → PaB(m)

↓ ↓
PaCD�

[n](1⊗ · · · ⊗ n, s−1(1)⊗ · · · ⊗ s−1(n))→ PaCD�(m)

for any s ∈Sn. The latter induces the desired commutative diagram

Bs
m

σ �→σm→ Bm

↓ ↓
exp(t̂k

n ) � Sn → exp(t̂k
m) � Sm �

3. Braid groups and free groups

In this section, we recall the relations between the free and (pure) braid groups, as
well as between their infinitesimal analogues. We also recall material from [AT2] about
the non-commutative Jacobian and complexes of spaces of cyclic words.

3.1. Action of braid groups on free Lie algebras. — For S a finite totally ordered set,
define the braid group BS by BS := B|S|. The images of the Artin generators of B|S| are
then σs, s ∈ S non-maximal.

Set B1,n := B{0,...,n} ×Sn+1Sn, where Sn ↪→Sn+1 =S{0,...,n} is σ �→ σ̃ , where σ̃ ex-
tends σ by σ̃ (0)= 0. Then B1,n is a braid group of type B. If we set τ := σ 2

0 , its presenta-
tion is as follows:

generators: τ, σ1, . . . , σn−1,(13)

relations: (τσ1)
2 = (σ1τ)2, τσi = σiτ for i ≥ 2,

Artin relations between σ1, . . . , σn−1.

Define elements of B1,n as follows:

X1 := τ, X2 := σ1τσ−1
1 , . . . , Xn := (σn−1 · · ·σ1)τ (σn−1 · · ·σ1)

−1.

We have then:

(14)
σiXiσ

−1
i =Xi+1, σiXi+1σ

−1
i =X−1

i+1XiXi+1,

σiXjσ
−1
i =Xj if j �= i, i + 1

for i = 1, . . . , n− 1, j = 1, . . . , n. One checks that B1,n may be presented as follows:

generators: X1, . . . ,Xn, σ1, . . . , σn−1,(15)

relations: relations (14), Artin relations between the σi.

More precisely, one shows directly that the presentations (13) and (15) are equivalent.
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Proposition 15. — (1) There is a unique group morphism Bn → Aut(Fn), taking σi (i =
1, . . . , n− 1) to the automorphism Xi �→Xi+1, Xi+1 �→X−1

i+1XiXi+1, Xj �→Xj for j �= i, i + 1.

(2) We have an isomorphism B1,n � Fn � Bn, where the semidirect product is with respect to the

above action. Its inverse is (Xi,1) �→Xi , (1, σi) �→ σi .

Proof. — (1) is well-known (see e.g. [Mag]). As mentioned in the Introduction, this
group morphism admits an interpretation in terms of the Fadell–Neuwirth fibration.
(2) follows from the fact that the presentation (15) is that of a semidirect product. �

Note that we have a commutative diagram

B1,n

∼→ Fn � Bn

↘ ↓
Sn

Taking kernels, we obtain:

Corollary 16. — We have an isomorphism PBn+1 � Fn � PBn, where the semidirect product is

with respect to the restriction PBn→ Aut(Fn) of the action of Proposition 15.

These statements have prounipotent counterparts:

Proposition 17. — (1) The morphism Bn→ Aut(Fn) in Proposition 15 extends to a morphism

Bn(k,Sn)→ Aut(Fn(k)).

(2) We have an isomorphism PBn+1(k)� Fn(k) � PBn(k).

Proof. — Immediate. �

Remark 18. — The results of this subsection can be reformulated ‘invariantly’ as
follows. If S is a finite totally ordered set, set S+ := {o} � S, where o < s for any s ∈ S.
We then set B1,S := BS+ ×SS+SS, and Xs := (

∏−
t<s σt)σ

2
min S(

∏−
t<s σt)

−1, where
∏− means

the product in decreasing order. Then we have injective group morphisms FS ↪→ B1,S,
s �→ Xs and BS ↪→ B1,S, which lead to an isomorphism B1,S � FS � BS. It restricts to an
isomorphism PBS+ � FS � PBS.

3.2. Lie algebraic analogues. — One checks that there is a unique Lie algebra mor-
phism tS→Der(fS), given by tss′ �→ (s �→ [s, s′], s′ �→ [s′, s], t �→ 0 for t �= s, s′). It follows
from the presentations of tS and tS+ that we have an isomorphism

tS+ � fS � tS,

given by tos �→ (s,0), tss′ �→ (0, tss′).
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3.3. Tangential derivations and tangential automorphisms. — If S is a set, define EautS :=
SS × (FS)

S; it is equipped with the semigroup law (σ, g)(τ, h) := (στ, k), where ks =
θ(σ, g)(hs)gτ(s) and θ : EautS→ End(FS) is given by θ(σ, g)(s) = Adgs

(σ (s)). Then θ is
a semigroup morphism. We have an isomorphism Ker θ � ZS, with inverse given by
(ns)s∈S �→ (gs)s∈S, where gs = sns for any s ∈ S. We set EautS := Im θ = EautS /ZS and call
its elements extended tangential endomorphisms of the free group.

A section of EautS→ EautS may be defined by (σ, (gs)s∈S) �→ (σ, (g′s)s∈S), where
g′s = gss

−degree of gs in s. We then have

EautS = ZS
� EautS,

where the action of EautS on ZS is via EautS→SS, (σ, (gs)s∈S) �→ σ .
Set TautS := Ker(EautS → SS), TautS := Ker(EautS → SS). Then Ker θ ⊂

TautS is central, and the above section of θ restricts to a morphism TautS → TautS,
therefore

TautS = ZS⊕TautS.

The semigroup morphism EautS → SS, (σ, g) �→ σ admits a section σ �→ (σ,1). We
then have isomorphisms

EautS =TautS �SS, EautS =TautS � SS

compatible with the above decompositions.
These semigroups admit prounipotent versions. We set EautS(k) :=SS × FS(k)S,

EautS(k) := Im(EautS(k)→ Aut(FS(k))); we recall that FS(k) � exp(f̂k
S). A section of

EautS(k)→ EautS(k) is defined as above, with g′s := gse
−(coefficient of logs in log gs) log s. Then as

above,

EautS(k)= kS
� EautS(k), TautS(k)= kS⊕TautS(k),

EautS(k)=TautS(k) � SS, EautS(k)=TautS(k) � SS.

Set tderk
S := Im(tderk

S → Der(fk
S)). Then the projection tderk

S → tderk
S admits a

section (us)s∈S �→ (u′s)s∈S, where u′s = us − (coefficient of us in s)s. Then we have an iso-
morphism

tder
k
S = kS⊕ tder

k
S,

which is equivariant under SS and is the Lie algebraic version of the above decomposi-
tions.



162 A. ALEKSEEV, B. ENRIQUEZ, C. TOROSSIAN

Proposition 19. — (1) There is a unique semigroup morphism B1,n

Ad→ Eautn, given by σi �→
(si, gi), where (gi)i+1 = X−1

i+1, and (gi)j = 1 for j �= i + 1, and Xi �→ (1, hi), where (hi)j = Xi

for j = 1, . . . , n. The composite map B1,n→ Eautn→ Aut(Fn) is the adjoint action of B1,n on its

normal subgroup Fn.

(2) This morphism restricts to a morphism PBn+1 → Tautn; the latter morphism extends

to a morphism PBn+1(k)→ Tautn(k). The composite maps PBn+1 → Tautn → Aut(Fn) and

PBn+1(k)→ Tautn(k)→ Aut(Fn(k)) are the adjoint actions of PBn+1 on Fn (resp., of PBn+1(k)

on Fn(k)).

The proof is straightforward.
As tderk

S = Lie TautS(k), tderk
S = Lie TautS(k), the Lie algebraic version of the se-

quence of morphisms TautS(k)→TautS(k) ↪→ Aut(FS(k)) is tderk
S � tderk

S ↪→Der(fk
S),

where tderk
S = Im(tderk

S→Der(fk
S))= tderk

S/kS.

Proposition 20. — There exists a unique morphism tn+1 → tdern, given by tij �→ (i �→
−xj, j �→ −xi, k �→ 0 for k �= i, j) and t0i �→ (j �→ xi). The composite map tn→ tdern→Der(fn)

coincides with the adjoint action of tn+1 on its ideal fn.

This follows from the Section 3.2.

3.4. Contravariant functors from the category Sord . — We define Sord as the category
where objects are totally ordered finite sets and morphisms are partially defined non-
decreasing maps.

The functor S �→ f̂k
S is then a contravariant functor Sord → {Lie algebras}, where

to the morphism T⊃ Dφ

φ→ S is assigned φ̃∗ : f̂k
S → f̂k

T, s �→ cbh(t, t ∈ φ−1(s)), and cbh
is the Campbell–Baker–Hausdorff product (according to the order in φ−1(s)).

Likewise, the functor S �→ TautS(k) is a contravariant functor Sord → {groups},
where to φ is assigned φ̃∗ : g = (gs)s∈S �→ gφ̃ = h= (ht)t∈T, where ht = φ̃∗(gφ(t)); we use the
convention gφ(t) = 1 for φ(t) undefined. The corresponding contravariant functor Sord→
{Lie algebras} is S �→̂tder

k
S (the hat denotes the degree completion); the maps ̂tder

k
S →

̂tder
k
T are defined in the same way, with the convention uφ(t) = 0 if φ(t) is undefined.

The contravariant functor structure of S �→ f̂k
S induces structures of contravariant

functors Sord→{algebras} and Sord→{vector spaces} on S �→ ̂U(fk
S) and S �→ T̂k

S (where
the hats again denote the degree completions).

We use the notation φ̃∗(g)= gφ̃ = g
˜I1,...,In for S= [n], where Ii = φ−1(i).

Remark 21. — The simplicial category � has the same objects as Sord , and its
morphisms are the (everywhere defined) non-decreasing maps. We thus have a functor
�→ Sord .
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3.5. Properties of the non-commutative Jacobian map. —

Proposition 22. — The composite map exp(t̂k
n+1)→Tautn(k)

J→ T̂k
n is zero.

Proof. — This follows from the relations between J and j and the fact that (tk
n+1

ad→
tderk

n

j→ Tk
n ) = 0, which follows from the cocycle identity for j and j(ad tii′) = 0 for any

i, i′. �

Proposition 23. — The composite map PBn+1(k)→Tautn(k)
J→ T̂k

n is zero.

Proof. — The map J admits an extension to a cocycle Eautn(k)
J→ T̂k

n , uniquely
defined by the condition that J(σ ) = 0 for σ ∈ SS. One checks that J(Adσi) = 0 for
i = 1, . . . , n− 1 and J(Ad Xi)= 0 for i = 1, . . . , n, which implies the statement. �

We now study the compatibility of j and J with the simplicial structure. Any par-

tially defined map [m] ⊃ Dφ

φ→ [n] gives rise to a Lie algebra morphism φ∗ : fn → fm,
x �→ xφ . These morphisms give rise to linear maps Tk

n → Tk
m. Then one can show:

Proposition 24. — j(uφ)= j(u)φ , J(gφ)= J(g)φ for u ∈ tderk
n , g ∈Tautn(k).

J and j are also compatible with the ordered simplicial structure. One can show:

Proposition 25. — For any non-decreasing partially defined map [m] ⊃ Dφ → [n], we have

j(uφ̃)= j(u)φ̃ , J(gφ̃)= J(g)φ̃ for u ∈̂tder
k
n , g ∈Tautn(k).

3.6. Complexes. — We define a complex T1
δ→ T2

δ→ T3 . . . as follows: the map

Tn

δ→ Tn+1 is

f �→
n

∑

k=1

(−1)k+1f 1,...,kk+1,...,n+1 − f 2,3,...,n+1 + (−1)nf 1,2,...,n,

so the first maps are f (x1) �→ f (x1 + x2) − f (x1) − f (x2) = f 12 − f 1 − f 2, f (x1, x2) �→
f (x1 + x2, x3)− f (x1, x2 + x3)− f (x2, x3)+ f (x1, x2)= f 12,3 − f 1,23 − f 2,3 + f 1,2, etc.

Proposition 26 (See [AT2]). — This complex is acyclic in degree 2 (the degree of Ti is i). The

kernel of T1
δ→ T2 is 1-dimensional, spanned by the class of x1 ∈U(fk

1)� T1.

We similarly define a complex T̂1
δ̃→ T̂2

δ̃→ T̂3 . . . by requiring that T̂n

δ̃→ T̂n+1 is

f �→
n

∑

k=1

(−1)k+1f
˜1,...,kk+1,...,n+1 − f 2,3,...,n+1 + (−1)nf 1,2,...,n,
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so the first maps are f (x1) �→ f (log(ex1ex2))− f (x1)− f (x2)= f
˜12 − f 1 − f 2, f (x1, x2) �→

f (log(ex1ex2), x3)− f (x1, log(ex2ex3))− f (x2, x3)+ f (x1, x2).

Proposition 27. — This complex is acyclic in degree 2, and Ker(T̂1
δ̃→ T̂2) is 1-dimensional,

spanned by the class of x1 ∈ ̂U(fk
1)� T̂1.

Proof. — The complex T̂1
δ̃→ ·· · has a decreasing filtration by the degree, and its

associated graded is the complex T1
δ→ ·· · , which is acyclic by Proprosition 26; so the

complex T̂1
δ̃→ ·· · is again acyclic in degree 2. The second statement follows from the

fact that log(ex1ex2)− x1 − x2 is a sum of brackets. �

4. Automorphisms of free groups

Fix � ∈M1(k). In this section, we first show that for any O ∈ Parn+1, the isomor-
phism μ̃O : PBn+1(k)→ exp(t̂k

n+1) (see (8)) restricts to an isomorphism Fn(k)→ exp(f̂k
n )

(in the case of the left parenthesization, this was proved in [HM]). We then set μO :=
μ̃O|Fn(k) ◦ can ∈ Aut(f̂k

n ), where can : exp(f̂k
n )→ Fn(k) is induced by exi �→ Xi , and we

show that μO ∈ Tautn(k)⊂ Aut(exp(f̂k
n )). We then show how the μO are related for var-

ious O ∈ Par. If O ∈ Parn has letters successively indexed by 0, . . . , n− 1, and if i ∈ [n],
we denote by O(i) the element of Parn+1 obtained from O by replacing the letter • with
index i by (••). Our main result (Theorem 30) is the identity

μO(i) = μ
1,2,...,ii+1,...,n
O ◦μ

i,i+1
•(••),

where we view μO(i) ,μO,μ•(••) as elements of Tautk(k) for k = n+ 1, n,2, by virtue of
the inclusion Tautk(k)⊂Tautk(k)⊕ kk =Tautn(k).

4.1. Restriction of formality isomorphisms to free groups. — Let S := [n]. We identify
S+ = {0, . . . , n}. Then the inclusions of normal subgroups FS ⊂ PBS+ and exp(f̂k

S) ⊂
exp(t̂k

S+) identify with Fn ⊂ PBn+1 and exp(f̂k
n ) ⊂ exp(t̂k

n+1). Recall that the genera-
tors of Bn+1 ⊃ PBn+1 are σ0, . . . , σn−1, the generators of Fn ⊂ PBn+1 are X1, . . . ,Xn

with X1 = σ 2
0 , . . . ,Xn = (σn−1 · · ·σ1)σ

2
0 (σn−1 · · ·σ1)

−1, the generators of tk
n+1 are tij with

i �= j ∈ {0, . . . , n}, and the generators of fk
n are x1, . . . , xn with xi = t0i .

The generators of Bn+1 and of Fn �PBn+1 ⊂ Bn+1 are depicted in Figure 3.

Proposition 28. — For any O ∈ Parn+1, the morphism μ̃O restricts to an isomor-

phism Fn(k)→ exp(f̂k
n ). The composition of μ̃O|Fn(k) with the isomorphism exp(f̂k

n )
can→ Fn(k),

exp(xi) �→Xi belongs to Tautn(k)⊂ Aut(exp(f̂k
n )). We denote it μO.
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FIG. 3. — Generators of B4 and F3

Proof. — Let us first treat the case of O := •(. . . (••)). As Xi = σi−1 · · ·σ1 ×
σ 2

0 (σi−1 · · ·σ1)
−1, we have μ̃O(Xi)= Adμ̃O(σi−1···σ1)�0,1,2...n(et01).

Now we have μ̃O(σi−1 · · ·σ1)�
0,1,2...n = eyi si−1 · · · s0 for some yi ∈ t̂k

n+1, so μ̃O(Xi)=
Adeyi (et0i). As t̂k

n+1 acts on f̂k
n by tangential automorphisms, we have Adeyi (et0i) =

Adezi (et0i) = Adezi (exi) for some zi ∈ f̂k
n . So μ̃O|Fn(k) ◦ can ∈ Tautn(k). The general case

follows from the identity μ̃O′ = Ad�O,O′ ◦μ̃O and the fact that for any � ∈ exp(t̂k
n+1),

Ad� ∈Tautn(k). �

Proposition 29. — If moreover O= •⊗ Ō from some Ō ∈ Parn, then

μ̃O|Fn(k)(X1 · · ·Xn)= ex1+···+xn .

Proof. — We have X1 · · ·Xn = σ1 · · ·σ 2
n−1 · · ·σ1. Now σn−1 · · ·σ1 = β•,Ō ∈

PaB(• ⊗ Ō, Ō⊗ •) while σ1 · · ·σn−1 = βŌ,• ∈ PaB(Ō⊗ •,• ⊗ Ō). So μO(X1 · · ·Xn)=
μ̃O(βŌ,•β•,Ō)= β

PaCD�

Ō,• β
PaCD�

•,Ō = et01+···+t0n = ex1+···+xn , as announced. �

Whereas the isomorphisms μ̃O are related by inner automorphisms, the various
isomorphisms μ̃O|Fn(k) are related by the identities

(16) μ̃O′|Fn(k) = Ad(�O,O′) ◦ μ̃O|Fn(k),

where the automorphisms Ad(�O,O′) of exp(f̂k
n ) are no longer necessarily inner.

4.2. Relation between μO and μO(i) . — Let O ∈ Parn. We index letters in O by
0, . . . , n − 1, fix an index i �= 0 and construct O(i) by doubling inside O the letter •
with index i.

O gives rise to a morphism μ̃O : Bn(k)→ exp(t̂k
n ) � Sn, which induces μO ∈

Tautn−1(k) ⊂ Tautn−1(k). Similarly, μ̃O(i) : Bn+1(k)→ exp(t̂k
n+1) � Sn+1 induces μO(i) ∈

Tautn(k)⊂Tautn(k).
We now prove:
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Theorem 30.

(17) μO(i) = μ
1,2,...,ii+1,...,n
O ◦μ

i,i+1
•(••).

Proof. — We first show that there are uniquely determined elements g1, . . . , gn−1 ∈
exp(f̂k

n−1) and g, h ∈ exp(f̂k
2) such that:

(a) μO = θ(g1, . . . , gn−1), log gi =− 1
2(x1 + · · · + xi−1)+O(x2), and3

(b) μ•(••) = θ(g, h), log g =O(x2), log h=− 1
2x1 +O(x2).

Let us prove the first statement (it actually contains the second statement as a par-
ticular case). The elements gi = gi(x1, . . . , xn−1) are uniquely determined by the equality
μO = θ(g1, . . . , gn−1), together with the condition that the coefficient of xi in the expan-
sion of log gi vanishes. We should then prove that log gi = − 1

2(x1 + · · · + xi−1)+O(x2).
We have

μ̃O(σj)= eaj · etj−1,j/2sj · e−aj ,

where aj ∈ t̂k
n has valuation ≥ 2 (we write this as aj ∈O(t2)), and

μ̃O(Xi)= μ̃O(σ1)
−1 · · · μ̃O(σi−1)

−1μ̃O(σi)
2μ̃O(σi−1) · · · μ̃O(σ1).

Now

μ̃O(σi−1) · · · μ̃O(σ1)= si−1 · · · s1e
1
2 (x1+···+xi−1)+O(t2)

and μ̃O(σ 2
i )= eai eti−1,i e−ai . It follows that

μ̃O(Xi)= Ad
e
− 1

2 (x1+···+xi−1)+O(t2)
eãi

(exi),

where ãi = s1 · · · si−1 · ai · si−1 · · · s1 ∈ O(t2), so μ̃O(Xi) = Ad
e
− 1

2 (x1+···+xi−1)+O(t2) (e
xi), which

implies that gi has the announced form.
To prove (17), we need to prove the equality

μO(i) = θ
(

g1(x1, . . . , xi + xi+1, . . . , xn), . . . , gi(x1, . . . , xi + xi+1, . . . , xn)g(xi, xi+1),(18)

gi(x1, . . . , xi + xi+1, . . . , xn)h(xi, xi+1), . . . , gn−1(x1, . . . , xi + xi+1, . . . , xn)
)

.

(12) implies that the diagram

Fn−1 → Fn

μ̃O|Fn−1 ↓ ↓μ̃O(i)|Fn

exp(f̂k
n−1)→ exp(f̂k

n )

3 O(x2) means an element of f̂k
n−1 of valuation ≥ 2.
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commutes, where the upper morphism takes Xj (j ∈ [n− 1]) to: Xj if j < i, XiXi+1 if j = i,
Xj+1 if j > i + 1; and where the lower morphism is similarly defined (replacing products
by sums and Xk ’s by xk ’s). Specializing to the generators Xj (j �= i) of Fn−1, this gives

μ̃O(i) (Xj)= Adg
0,1,...,ii+1,...,n
j

(exj )

for j < i and

μ̃O(i) (Xj)= Adg
0,1,...,ii+1,...,n
j−1

(exj )

for j > i+ 1, which implies that (18) holds when applied to the exj , j �= i, i + 1.
We now prove that (18) also holds when applied to exi and exi+1 .
The morphism Xi ∈ Bn = PaB(O,O) can be decomposed as

O
(σi−2···σ0)

−1→ (O1⊗ (••))⊗O2

σ 2
i−1→ (O1⊗ (••))⊗O2

σi−2···σ0→ O.

Here the braid group elements indicate the morphisms. Let γ ∈ exp(t̂k
n ) � Sn be the

image of the morphism O
(σi−2···σ0)

−1→ (O1⊗ (••))⊗O2 under PaB→ PaCD�; its image
in Sn is the permutation s0 · · · si−2, i.e., (0, . . . , n − 1) �→ (i − 1,0,1, . . . , i − 2, i, i +
1, . . . , n− 1). The image of (O1⊗ (••))⊗O2

σ 2
i−1→ (O1⊗ (••))⊗O2 is eti−1,i , therefore the

image of Xi is

μO(Xi)= γ eti−1,iγ −1.

We have γ = γ0s0 · · · si−2, where γ0 ∈ exp(t̂k
n ). As s0 · · · si−2 · ti−1,i = xi , we have

μO(Xi)= γ0exiγ −1
0 .

As this image is also Adgi(x1,...,xn−1)(e
xi), we derive from this that g−1

i γ0 commutes with xi ,
hence by Proposition 51 has the form eλxiα0i,1,2,...,i−1,i+1,...,n−1, where α ∈ exp(t̂k

n−1).
Since μO(σj)= sj e

tj,j+1/2, we get logγ0 =− 1
2(x1 + · · · + xi−1)+O(x2). Comparing

linear terms in xi , we get λ= 0.
Let us now compute μO(i) (Xi). The morphism Xi ∈ Bn+1 = PaB(O(i),O(i)) can be

decomposed as

O(i) (σi−2···σ0)
−1→ (O1⊗ (•(••)))⊗O2

σ 2
i−1→ (O1⊗ (•(••)))⊗O2

σi−2···σ0→ O(i)

(here σ 2
i−1 involves the two first • of •(••)). The morphism O(i)

(σi−2···σ0)
−1→ (O1⊗(•(••)))⊗

O2 is obtained from O(i)
(σi−2···σ0)

−1→ (O1 ⊗ (••)) ⊗ O2 by the operation of doubling of
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the ith strand, so its image is γ 0,1,2,...,ii+1,...,n = γ
0,1,2,...,ii+1,...,n
0 (s0 · · · si−2). The image of

•(••) σ 2
1→•(••) is Adg(x1,x2)(e

x1), so the image of

(O1⊗ (•(••)))⊗O2

σ 2
i−1→ (O1⊗ (•(••)))⊗O2

is Adg(ti−1,i,ti−1,i+1)(e
ti−1,i). It follows that

μ̃O(i) (Xi)= Adγ 0,1,2,...,ii+1,...,ng(ti−1,i,ti−1,i+1)(e
ti−1,i)= Adγ

0,1,2,...,ii+1,...,n
0 g(xi,xi+1)

(exi).

Now we claim that

Adγ
0,1,2,...,ii+1,...,n
0 g(xi,xi+1)

(exi)= Adg
0,1,2,...,ii+1,...,n
i g(xi,xi+1)

(exi).

Indeed,

Ad(g−1
i γ0)0,1,2,...,ii+1,...,ng(xi,xi+1)

(exi)

= Ad(α0i,1,2,...,i−1,i+1,...,n−1)0,1,2,...,ii+1,...,ng(xi,xi+1)(e
xi)

= Adα0ii+1,2,3,...,i−1,i+2,...,ng(xi,xi+1)(e
xi).

Now xi and xi+1 commute with any α0ii+1,..., so this is Adg(xi,xi+1)(e
xi).

So we get

μ̃O(i) (Xi)= Adg
0,1,2,...,ii+1,...,n
i g(xi,xi+1)

(exi).

The same argument shows that

μ̃O(i) (Xi+1)= Adg
0,1,2,...,ii+1,...,n
i h(xi,xi+1)

(exi+1),

as wanted. �

5. Proof of Theorem 4 and Propositions 6 and 7

5.1. Proof of Theorem 4. — We first recall the formulation of Theorem 4:

Theorem 31. — Let � ∈M1(k). Then μ� := (�(x1,−x1− x2), e−(x1+x2)/2�(x2,−x1−
x2)e

x2/2) ∈Taut2(k) satisfies �(t12, t23) ◦μ
12,3
� ◦μ

1,2
� = μ

1,23
� ◦μ

2,3
� .

Proof. — We first prove that μ•(••) = μ�. X1 ∈ B3 = PaB(•(••)) corresponds
to a•,•,• ◦ (β2

•,• ⊗ id•) ◦ a−1
•,•,•. Then μ•(••)(ex1) = μ̃•(••)(X1) = �(t01, t12)e

t01�(t01, t12)
−1.

Since t01 + t12 + t02 is central in t3 and since � is group-like, this is �(t01,−t01 −
t02)e

t01�(t01,−t01 − t02)
−1 =�(x1,−x1 − x2)e

x1�(x1,−x1 − x2)
−1 = μ�(ex1).
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Similarly, X2 corresponds to (id• ⊗β•,•) ◦ a•,•,• ◦ (β2
•,• ⊗ id•) ◦ a−1

•,•,• ◦ (id• ⊗β−1
•,•).

Then

μ•(••)(ex2)= μ̃•(••)(X2)

= et12/2(12)�(t01, t12)e
t01�(t01, t12)

−1(12)e−t12/2

= et12/2�(t02, t12)e
t02�(t02, t12)

−1e−t12/2

= e−(t01+t02)/2�(t02,−t01 − t02)e
t02�(t02,−t01 − t02)

−1e(t01+t02)/2

= e−(x1+x2)/2�(x2,−x1 − x2)e
x2�(x2,−x1 − x2)

−1e(x1+x2)/2

=μ�(ex2).

So μ•(••) = μ�.
Set now O := •((••)•), O′ := •(•(••)). Then canO,O′ = id• ⊗a•,•,• ∈ PaB(O,O′),

whose image in PaCD�(O,O′) = exp(t̂4) � S4 is �(t12, t23) = �O,O′ . It follows that
�•((••)•),•(•(••)) =�(t12, t23).

Theorem 30 implies that μ•((••)•) = μ
12,3
� ◦μ1,2

� and μ•(•(••)) = μ
1,23
� ◦μ2,3

� and (16)
implies that μ•(•(••)) = Ad�(t12, t23) ◦μ•((••)•). All this implies Theorem 31. �

5.2. Proof of Proposition 6. — We recall the formulation of Proposition 6. The
scheme SolKV is defined by

SolKV(k) := {

μ ∈Taut2(k)|θ(μ)(ex1ex2)= ex1+x2

and ∃r ∈ u2k[[u]], J(μ)= 〈r(x1 + x2)− r(x1)− r(x2)〉
}

,

for any Q-ring k, and Proposition 6 says:

Proposition 32. — The map � �→ μ� is a morphism of Q-schemes M1→ SolKV.

Proof. — Let � ∈M1(k). We first should prove that θ(μ�)(ex1ex2)= ex1+x2 . We will
give three proofs of this fact:

First proof. We have

θ(μ�)(ex1xx2)= θ(μ�)(ex1)θ(μ�)(ex2)

=�(x1,−x1 − x2)e
x1�(−x1 − x2, x1)e

−(x1+x2)/2

×�(x2,−x1 − x2)e
x2�(−x1 − x2, x1)e

(x1+x2)/2

=�(x1,−x1 − x2)e
x1/2�(x2, x1)e

x2/2�(−x1 − x2, x1)e
(x1+x2)/2

= ex1+x2,

where the second equality follows from the duality identity and the third and fourth
equalities both follow from the hexagon identity.



170 A. ALEKSEEV, B. ENRIQUEZ, C. TOROSSIAN

Second proof. Let us set ν := μ−1
� . Since μ� satisfies (3), we have

(19) ν2,3 ◦ ν1,23 = ν1,2 ◦ ν12,3 ◦Ad(�(t12, t23)).

Let us set C(x1, x2) := θ(ν)(x1 + x2), and apply (19) to x1 + x2 + x3 to obtain
C(x1,C(x2, x3)) = C(C(x1, x2), x3). According to [AT2], this implies C(x1, x2) =
s−1 log(esx1esx2) for some s ∈ k×. Checking degree 1 and 2 terms in ν, we get s= 1.

Third proof. Set O := •(••), then μO = μ�. Proposition 29 implies that
μ̃O(X1X2)= ex1+x2 . Then θ(μO)(ex1ex2)= μ̃O|F2(k) ◦ can(ex1ex2)= μ̃O(X1X2)= ex1+x2 .

We now prove that J(μ�) has the desired form. It follows from Proposition 22 that

J(Ad�(t12, t23))= 0.

Proposition 24 implies that J(μ12,3
� )= J(μ�)12,3, etc., and we get by applying J to (3),

�(t12, t23) · J(μ�)12,3 +�(t12, t23) ◦μ
12,3
� · J(μ�)1,2

= J(μ�)1,23 +μ
1,23
� · J(μ�)2,3.

Applying the inverse of (3), we get

(μ
1,2
� )−1 ◦ (μ

12,3
� )−1 · J(μ�)12,3 + (μ

1,2
� )−1 · J(μ�)1,2

= (μ
2,3
� )−1 ◦ (μ

1,23
� )−1 · J(μ�)1,23 + (μ

2,3
� )−1 · J(μ�)2,3,

and since a12,3 · t12,3 = (a · t)12,3, etc.,

(μ
1,2
� )−1 · (μ−1

� · J(μ�))12,3 + (μ−1
� · J(μ�))1,2

= (μ
2,3
� )−1 · (μ−1

� · J(μ�))1,23 + (μ−1
� · J(μ�))2,3.

Now θ(μ�)−1(x1+ x2)= log(ex1ex2) implies that (μ
1,2
� )−1 · t12,3 = t

˜12,3 and (μ
2,3
� )−1 ·

t1,23 = t
˜1,23, so δ̃(μ−1

� · J(μ�))= 0. According to Proposition 27, there exists r ∈ T̂1 with
valuation ≥ 2 such that μ−1

� · J(μ�)= δ̃(r). Now μ� · r ˜12 = r12, and μ� · r1 = r1, μ� · r2 =
r2 as μ�(xi) is conjugated to xi for i = 1,2 in exp(f̂k

2). Therefore μ� · δ̃(r) = δ(r). So
J(μ�)= δ(r)= 〈r(x1 + x2)− r(x1)− r(x2)〉, where r ∈ u2k[[u]]. �

5.3. Proof of Proposition 7. — For � ∈ M1(k), recall [DT, E] that there exists a
unique formal series 	�(u) ∈ 1+ u2k[[u]], such that

(1+ y∂y�(x, y))ab = 	�(x+ y)

	�(x)	�(y)
.

Proposition 7 then says:

Proposition 33. — J(μ�)= 〈log	�(x+ y)− log	�(x)− log	�(y)〉.
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Proof. — For A(x, y) ∈ exp(f̂k
2) such that log A(x, y) has vanishing linear term in y,

let U := (1,A(x, y)) ∈Taut2(k). Let

log A(x, y)=
∑

k≥1

αk(ad x)k(y)+O(y2)

be the expansion of log A(x, y); here and later O(y2) means a series of elements with
y-degree ≥ 2. Then

log U=
(

0,
∑

k≥1

αk(ad x)k(y)+O(y2)

)

∈̂tder
k
2 ,

and J(U)= j(u)+O(y2). Now j(log U)= 〈∑k≥1 αky(−x)k +O(y2)〉. So

J(U)=
〈

∑

k≥1

αk(−x)ky+O(y2)

〉

.

On the other hand, the hexagon identity implies that μ� = Inn(�(x,−x− y)e−x/2) ◦ μ̇�,
where μ̇� = (1,�(x, y)−1) and Inn(a)= (ae−axx, ae−ayy) for a ∈ exp(f̂k

2) with log a= axx+
ayy+ (terms of degree ≥ 2), and we then have J(μ̇�)= J(μ�).

If we set log	�(u)=∑

n≥2(−1)nζ�(n)un/n, then we have

log�(x, y)=−
∑

k≥1

ζ�(k+ 1)(ad x)k(y)+O(y2),

therefore

J(μ�)= J(μ̇�)=
〈

∑

k≥1

(−1)kζ�(k + 1)xky

〉

+O(y2).

As we have J(μ�)= 〈f (x)+ f (y)− f (x+ y)〉 for some series f (x), we get

J(μ�)=
〈

(−1)k ζ�(k + 1)

k + 1
((x+ y)k+1 − xk+1 − yk+1)

〉

(20)

= 〈log	�(x)+ log	�(y)− log	�(x+ y)〉.
This proves Proposition 7. �

6. Group and torsor aspects

This section is devoted to the proof of Proposition 8, Theorem 9 and Proposi-
tion 10, which describe the torsor structure of SolKV(k) and show that the map � �→ μ�

is a morphism of torsors.
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6.1. Group structures of KV(k) and KRV(k). — Recall that

KV(k) := {

α ∈Taut2(k)|θ(α)(exey)= exey

and ∃σ ∈ u2k[[u]], J(α)= 〈σ(log(exey))− σ(x)− σ(y)〉},
and

KRV(k) := {

a ∈Taut2(k)|θ(a)(ex+y)= ex+y

and ∃s ∈ u2k[[u]], J(a)= 〈s(x+ y)− s(x)− s(y)〉}.
By Proposition 26, σ and s as above are unique, and we set s := Duf(α), s :=

Duf(a). The first part of Proposition 8 states:

Proposition 34. — KV(k) and KRV(k) are subgroups of Taut2(k), and Duf :KV(k)→
u2k[[u]], Duf :KRV(k)→ u2k[[u]] are group morphisms.

Proof. — The statements on KRV(k) are proved in [AT2].
Let us prove that KV(k) is a group. For α ∈ KV(k), let σα := Duf(α), so σα ∈

u2k[[u]], and J(α) = δ̃(σα). If α,α′ ∈ KV(k), we have θ(α′ ◦ α)(exey) = exey. Moreover,
α′(ex), α′(ey) are conjugate to ex, ey, and α′(exey)= exey, which implies

(21) ∀t ∈ T̂1, α′ · δ̃(t)= δ̃(t).

Then J(α′ ◦ α) = J(α′) + α′ · J(α) = δ̃(σα′) + α′ · δ̃(σα) = δ̃(σα + σα′), where the last
equality follows from (21). It follows that α′ ◦ α ∈KV(k), and that σα′◦α = σα + σα′ . One
proves similarly that α−1 ∈KV(k). �

6.2. The torsor structure of SolKV(k). — The second part of Proposition 8 states:

Proposition 35. — SolKV(k) is a torsor under the commuting left action of KV(k) and right

action of KRV(k), and Duf : SolKV(k)→ u2k[[u]] is a morphism of torsors.

Proof. — It is proved in [AT2] that KRV(k) acts freely and transitively on
SolKV(k).

Let us prove that KV(k) acts on SolKV(k). For μ ∈ SolKV(k), α ∈ KV(k), we
have θ(μ ◦ α)(exey)= θ(μ)(exey)= ex+y.

Since θ(μ)(ex), θ(μ)(ey) are conjugate to ex, ey, and since θ(μ)(exey)= ex+y, we have

∀t ∈ T̂2, δ(t)= μ · δ̃(t).
Let now rμ := Duf(μ), so J(μ) = δ(rμ). Then J(μ ◦ α) = J(μ) + μ · J(α) =

δ(rμ) + μ · δ̃(σα) = δ(rμ + σα), where the last equality uses the above identity. So
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μ ◦ α ∈ SolKV(k), and rμ◦α = rμ + σα . It follows that KV(k) acts on SolKV(k), and
that the map Duf : SolKV(k)→ u2k[[u]] is compatible with Duf :KV(k)→ u2k[[u]].

Let us now prove that the action of KV(k) on SolKV(k) is free and transitive. For
μ,μ′ ∈ SolKV(k), set α := μ−1 ◦ μ′; then θ(α)(exey) = θ(μ)−1(ex+y) = exey, and J(α) =
J(μ−1)+μ−1 · J(μ′)= μ−1 · (J(μ′)− J(μ)) as J(μ−1)=−μ−1 · J(μ). Then J(α)= μ−1 ·
(δ(rμ′ − rμ)) = δ̃(rμ′ − rμ), where the last equality uses μ−1 · δ(t) = δ̃(t) for t ∈ T̂1. So
α ∈KV(k).

6.3. Compatibilities of morphisms with group structures and actions (proof of Theorem 9). —

We now show that: (a) f �→ α−1
f is a group morphism GT1(k)→KV(k), (b) g �→ a−1

g is
a group morphism GRT1(k)→ KRV(k), (c) the map � �→ μ� is compatible with the
actions of these groups.

For this, we will show that

(22) μf ∗� = μ� ◦ αf , μ�∗g = ag ◦μ�.

Since these are identities in Taut2(k) ⊂ Aut(f̂k
2), it suffices to check them on the gen-

erators x, y of f̂k
2 . We give the proofs in the case of x, the proofs in the case of y being

similar.
The proofs go as follows:

θ(μf ∗�)(x)= Ad(f ∗�)(x,−x−y)(x)

= Adf (�(x,−x−y)ex�(x,−x−y)−1,e−x−y)�(x,−x−y)(x)

= Adf (μ�(ex),μ�(e−ye−x))(μ�(x))

= Adμ�(f (ex,e−ye−x))(x)= θ(μ� ◦ αf )(x)

and

θ(μ�∗g)(x)= Ad(�∗g)(x,−x−y)(x)

= Ad�(g(x,−x−y)xg(x,−x−y)−1,−x−y)g(x,−x−y)(x)

= Ad�(ag(x),ag(−x−y))(ag(x))

= ag(�(x,−x− y)x�(x,−x− y)−1)= θ(ag ◦μ�)(x).

The first part of (22) implies the following: (a) if f ∈ GT1(k), then αf ∈ KV(k);
(b) αf1∗f2 = αf2 ◦ αf1 ; (c) M1(k)→ SolKV(k) is compatible with the group morphism
f �→ α−1

f .
Indeed, using the nonemptiness of M1(k) (see [Dr]) we get αf = μ−1

� ◦μf ∗�, which
implies αf ∈ KV(k) according to Section 6.2, i.e., (a). Again using the nonemptiness of
M1(k), we get αf1∗f2 = μ−1

� ◦μ(f1∗f2)∗� = (μ−1
� ◦μf2∗�)◦(μ−1

f2∗�◦μf1∗(f2∗�))= αf2 ◦αf1 (where
we used (f1 ∗ f2) ∗�= f1 ∗ (f2 ∗�)), which proves (b). (c) is then tautological.
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Similarly, the second part of (22) implies: (a) if g ∈ GRT1(k), then ag ∈ KRV(k);
(b) ag1∗g2 = ag2 ◦ ag1 ; (c) M1(k)→ SolKV(k) is compatible with the group morphism
g �→ a−1

g . All this proves Theorem 9.
It is easy to prove the identities αf1∗f2 = αf2 ◦ αf1 , ag1∗g2 = ag2 ◦ ag1 directly (i.e., not

using the nonemptiness of M1(k)). Indeed, these are identities in Taut2(k) ⊂ Aut(f̂k
2),

which can be checked on x, y. The verification in the case of x goes as follows:

θ(αf1∗f2)(x)= Ad(f1∗f2)(ex,e−ye−x)(x)

= Adf1(f2(ex,e−ye−x)exf2(ex,e−ye−x)−1,e−ye−x)f2(ex,e−ye−x)(x)

= Adf1(αf2 (ex),αf2 (e−ye−x))(αf2(x))

= Adαf2 (f1(ex,e−ye−x))(x)= θ(αf2 ◦ αf1)(x),

and

θ(ag1∗g2)(x)= Ad(g1∗g2)(x,−x−y)(x)

= Adg1(g2(x,−x−y)xg2(x,−x−y)−1,−x−y)g2(x,−x−y)(x)

= Adg1(ag2 (x),ag2 (−x−y))(ag2(x))

= ag2(g1(x,−x− y)xg1(x,−x− y)−1)= θ(ag2 ◦ ag1)(x).

Remark 36. — The Lie algebra morphism corresponding to g �→ a−1
g is the mor-

phism ν : grt1→ krv from [AT2], given by ψ(x, y) �→ (ψ(x,−x− y),ψ(y,−x− y)).

6.4. Torsor properties of the Duflo formal series (proof of Proposition 10). — We have al-

ready proved that M1(k)
��→μ�→ SolKV(k) and SolKV(k)

Duf→ u2k[[u]] are morphisms of

torsors. On the other hand, it follows from [E] that M1(k)
��→log	�→ {r ∈ u2k[[u]]|rev(u)=

− u2

24 + · · · } is a morphism of torsors and from Proposition 7 that the diagram of Propo-
sition 10 commutes. Proposition 10 follows.

For later use, let us make the group morphism GT1(k)→ u3k[[u2]] underlying
� �→ log	� explicit.

Lemma 37. — For f ∈GT1(k), there is a unique 	f ∈ exp(u3k[[u2]]) such that

[log f (ex, ey)] = 1− 	f (−x)	f (−y)

	f (−x− y)
;

in the l.h.s., we use the isomorphism f̂′2/f̂
′′
2 � xyk[[x, y]] given by (class of (ad x)k(ad y)l([x, y]))↔

xk+1yl+1. The map GT1(k)→ u3k[[u2]], f �→ log	f is a group morphism and 	f ∗� = 	f 	� for

any f ∈GT1(k), � ∈M1(k).
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Proof. — The map f2→ k[x, y], ψ �→ (y∂yψ(x, y))ab also induces an isomorphism
f̂′2/f̂

′′
2 � xyk[[x, y]], which takes the class (ad x)k(ad y)l([x, y]) to (−1)k+l+1xk+1yl+1. So for

ψ(x, y) ∈ f̂′2, we have (y∂yψ(x, y))ab(x̄, ȳ) = −[ψ](−x̄,−ȳ) (where ψ �→ [ψ] is the map
f̂′2→ f̂′2/f̂

′′
2 � xyk[[x, y]]).

So (4) may be rewritten

[log�](x, y)= 1− 	�(−x− y)

	�(−x)	�(−y)
.

If now ψ,α ∈ f̂′2, we have ψ(e−αxeα, y) ∈ f̂′2 and [ψ(e−αxeα, y)] = (1− [α(x, y)])×
[ψ(x, y)]. Indeed, when ψ(x, y) = (ad x)k(ad y)l([x, y]), one checks that the part of
ψ(e−αxeα, y) containing α more than twice lies in f̂′′2, and the part containing it once
has the same class as (ad x)k(ad y)l([[−α, x], y]).

If now f ∈GT1(k), we have (f ∗�)(x, y)=�(x, y)f (�−1(x, y)ex�(x, y), ey), so

[log(f ∗�)(x, y)] = [log�(x, y)] + [log f (�−1(x, y)ex�(x, y), ey)]
= [log�(x, y)] + [log f (ex, ey)]
− [log�(x, y)][log f (ex, ey)],

so

(23) 1− [log(f ∗�)(x, y)] = (1− [log�(x, y)])(1− [log f (ex, ey)]).
If we fix �0 ∈M1(k) and set 	f (u) := 	f ∗�0(u)/	�0(u), then we get

1− [log f (ex, ey)] = 	f (−x)	f (−y)

	f (−x− y)

as wanted. Moreover, (23) implies that 	f ∗� = 	f 	�, which also implies that f �→ 	f is a
group morphism. �

7. Analytic aspects

In this section, the base field k is R or C. The main result of this section is the
proof of Theorem 5, which says that a solution of the original KV conjecture may be
constructed using the Knizhnik–Zamolodchikov associator.

7.1. Analytic germs. — We set R+{{x}} := {f ∈ R+[[x]]|f has positive radius of
convergence} and R+{{x}}0 := {f ∈ R+{{x}}|f (0) = 0}. If f , g ∈ R+[[r]], we write f " g

iff g − f ∈R+[[r]]. We define f " g similarly when f , g ∈R+[[r1, . . . , rn]].
Let V,E be finite dimensional vector spaces and let | · |V, | · |E be norms on V,E.

The space of E-valued formal series on V is E[[V]] = {f =∑

n≥0 fn, fn ∈ Sn(V∗) ⊗ E};
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we define E[[V]]0 ⊂ E[[V]] by the condition f0 = 0. For fn ∈ Sn(V∗)⊗ E, viewed as an
homogeneous polynomial V→ E, we set |fn| := supv �=0(|fn(v)|E/|v|nV). An analytic germ
on V valued in E (at the neighborhood of 0) is a series f ∈ E[[V]], such that |f |(r) :=
∑

n≥0 |fn|rn ∈R+{{r}}. We denote by E{{V}} ⊂ E[[V]] the subspace of analytic germs, and
set E{{V}}0 := E[[V]]0 ∩ E{{V}}.

If f ∈ E{{V}} and α =∑

n≥0 αnr
n ∈ R+[[r]]0, we say that α is a dominating series

for f if |fn| ≤ αn for any n; we write this as |f (v)|E " α(|v|V).
If V1, . . . ,Vk are finite dimensional vector spaces with norms | · |V1, . . . , | · |Vk

, then
we equip V1⊕· · ·⊕Vk with the norm |(v1, . . . , vk)| := supk |vi|Vi

. If f is an analytic germ
on V1⊕· · ·⊕Vk valued in E, we decompose f =∑

n∈Nk fn, where fn :V1×· · ·×Vk→ E
is the n-multihomogeneous component of f . We then set

|fn| := sup(x1,...,xk)∈∏i(Vi−{0}) |fn(x1, . . . , xk)|E/|x1|n1
V1

. . . |xk|nk

Vk
.

Then f is an analytic germ iff |f |(r1, . . . , rn) := ∑

n |fn|rn1
1 · · · rnk

k ∈ R+[[r1, . . . , rk]]
converges in a polydisc. If α = ∑

n1,...,nk≥0 αn1,...,nk
r

n1
1 · · · rnk

k ∈ R+[[r1, . . . , rk]], we write
|f (v1, . . . , vk)|E " α(|v1|V1, . . . , |vk|Vk

) if for each n, |fn(v1, . . . , vk)|E ≤
αn(|v1|V1, . . . , |vk|Vk

).
Let now g be a finite dimensional Lie algebra; let | · | be a norm on g; let M > 0

be such that the identity |[x, y]| ≤M|x||y| holds.
The specialization to g of the Campbell–Baker–Hausdorff series is a series x ∗ y=

cbh(x, y) ∈ g[[g× g]]0.

Lemma 38. — (1) The CBH series is an analytic germ g × g→ g; we have |x ∗ y| "
1
M f (M(|x| + |y|)), where f (u)= ∫ u

0 − ln(2−ev)

v
dv.

(2) g× g→ g, (x, y) �→ ead x(y) is an analytic germ, and |ead x(y)| " eM|x||y|.
Proof. — (1) is proved as in [Bk], not making use of the final estimate 1

r+s
≤ 1.

(2) follows immediately from |(ad x)n(y)| ≤Mn|x|n|y|. �

7.2. Tautan
n (g) and tderan

n (g). — We set Tautn(g) := {(a1, . . . , an)|ai ∈ g[[gn]]0} and
define on this set a product by (a1, . . . , an)(b1, . . . , bn) := (c1, . . . , cn), where

ci(x1, . . . , xn) := bi(e
ad a1(x1,...,xn)(x1), . . . , ead an(x1,...,xn)(xn)) ∗ ai(x1, . . . , xn).

This equips Tautn(g) with a group structure. We set Tautan
n (g) := {(a1, . . . , an)|ai ∈

g{{gn}}0}.
Proposition 39. — Tautan

n (g) is a subgroup of Tautn(g).

Proof. — Let (a1, . . . , an) and (b1, . . . , bn) belong to Tautan
n (g). Let α(r), β(r) ∈

R+{{r}}0 be germs such that the identities |ai(x1, . . . , xn)| " α(supi |xi|), |bi(x1, . . . , xn)| "
β(supi |xi|) hold. Then
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|ci(x1, . . . , xn)| " fM(|ai(x1, . . . , xn)| + |bi(e
ad a1(x1), . . . , ead an(xn))|)

" fM(α(supi |xi|)+ β(eMα(supi |xi |) supi |xi|))= γ (supi |xi|),
where fM(u) = 1

M f (Mu) and γ (r) = fM(α(r) + eMα(r)β(r)) has nonzero radius of con-
vergence. Here we use the compatibility of norms with composition: namely, if f ∈
E[[V1 × · · · × Vn]]0 and gi ∈ Vi[[W]]0, with |f (v1, . . . , vn)| " α(|v1|, . . . , |vn|) and
|gi(w)| " βi(|w|), then h := f ∈ (g1, . . . , gn) ∈ E[[W]]0 and |h(w)| " α◦(β1, . . . , βn)(|w|).
We also use the non-decreasing properties of elements of R+[[r1, . . . , rn]]0 (i.e., if F ∈
R+[[u1, . . . , uk]]0 and ui, u′i ∈R+[[r1, . . . , rl]]0 with ui " u′i, then F(u1, . . .)" F(u′1, . . .). So
(a1, . . . , an)(b1, . . . , bn) ∈Tautan

n (g).
If now (a1, . . . , an) ∈ Tautan

n (g), then its inverse (b1, . . . , bn) in Tautn(g) is uniquely
determined by the identities

bi(x1, . . . , xn)=−ai(e
ad b1(x1,...,xn)(x1), . . . , ead bn(x1,...,xn)(xn)).

Let us show that each bi(x1, . . . , xn) is an analytic germ. For this, we define inductively
the sequence b(k) = (b

(k)
1 , . . . , b(k)

n ) by b(0) = (0, . . . ,0), and

b
(k+1)

i (x1, . . . , xn)=−ai(e
ad b

(k)
1 (x1,...,xn)(x1), . . . , ead b

(k)
n (x1,...,xn)(xn)).

One checks that b(k) = b(k−1) +O(xk), so the sequence (b(k))k≥0 converges in the formal
series topology; the limit b is then the inverse of a= (a1, . . . , an).

Let us now set βk := supi |b(k)

i | (if ui(r)=∑

k≥0 ui,kr
k ∈R+[[r]] is a finite family, we

set (supi ui)(r) :=∑

k≥0(supi ui,k)r
k ). We then have

|b(k+1)

i (x1, . . . , xn)| " α(supi |ead b
(k)
i (x1,...,xn)(xi)|)" α(eMβk(supi |xi |) supi |xi|),

so βk+1(r)" α(eβk(r)r).
We now define a sequence (γk)k≥0 of elements of R+[[r]]0 by γ0 = 0,

γk+1(r)= α(eMγk(r)r).

As the exponential function, mutiplication by r and α are non-decreasing, we have
βk " γk . On the other hand, we have γk(r)= γk−1(r)+O(rk), so the sequence (γk)k con-
verges in R+[[r]]0 (one also checks that this sequence is non-decreasing). Its limit γ then
satisfies

(24) γ (r)= α(eMγ (r)r).

It is easy to show that (24) determines γ (r) ∈ R[[r]]0 uniquely. On the other hand, the
function (γ, r) �→ γ − α(eMγ r)=: F(γ, r) is analytic at the neighborhood of (0,0), with
differential at this point ∂γ F(0,0)dγ + ∂rF(0,0)dr = dγ −Mα′(0)dr. We may then ap-
ply the implicit function theorem and use the fact that the dγ -component of dF(0,0)
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is nonzero to derive the existence of an analytic function γan(r) satisfying (24). By the
uniqueness of solutions of (24), we get that the expansion of γan is γ , so γ ∈R+{{r}}0.

Now |b(k)

i (x1, . . . , xn)| " βk(supi |xi|) " γk(supi |xi|) " γ (supi |xi|), so by taking the
limit k→∞, |bi(x1, . . . , xk)| " γ (supi |xi|), which implies that bi ∈ g{{gn}}0, as wanted. �

According to [AT2], we have a bijection

κ :Tautn(k)→ tder
k
n , g �→ �− θ(g)�θ(g)−1,

where � is the derivation given by xi �→ xi .
Set tdern(g) := {(u1, . . . , un)|ui(x1, . . . , xn) ∈ g[[gn]]0}, and tderan

n (g) :=
{(u1, . . . , un)|ui ∈ g{{gn}}0} ⊂ tdern(g). We have maps Tautn(k)→ Tautn(g), tderk

n →
tdern(g) induced by the specialization of formal series.

Lemma 40. — (1) There exists a map κg :Tautn(g)→ tdern(g), such that the diagram

Tautn(k)
κ→ tderk

n↓ ↓
Tautn(g)

κg→ tdern(g)

commutes.

(2) This map restricts to a map κan
g
:Tautan

n (g)→ tderan
n (g).

Proof. — (1) If ai, bi ∈ f̂k
n are such that g = (eb1, . . . , ebn), g−1 = (ea1, . . . , ean), then

κ(g)= u= (u1, . . . , un), with

ui(x1, . . . , xn)=
(

1− ead ai

ad ai

(ȧi)

)

(ead b1(x1,...,xn)(x1), . . . , ead bn(x1,...,xn)(xn))

and ȧi = �(ai) = d

dt |t=1
ai(tx1, . . . , txn). So we define κg by the same formula, where ȧi is

now defined as d

dt |t=1
ai(tx1, . . . , txn) (or

∑

k≥0 kak
i , where ak

i is the degree n part of ai ).
(2) If the functions ai, bi are analytic germs, then so is ȧi and therefore also

each ui. �

Recall also from [AT2] that if μ ∈ Taut2(k), μ(x ∗ y)= x+ y and J(μ)= 〈r(x)+
r(y)− r(x+ y)〉 (i.e., μ ∈ SolKV(k)), then u := −κ(μ−1)= (A(x, y),B(x, y)) satisfies:

(KV1) x+ y− y ∗ x= (1− e−ad x)(A(x, y))+ (ead y − 1)(B(x, y)),
(KV3) j(u)= 〈φ(x)+ φ(y)− φ(x ∗ y)〉, where φ(t)= tr′(t).

Let �KZ be the KZ associator, �̃KZ(a, b) :=�KZ(a/(2π i), b/(2π i)) ∈M1(C) and
μKZ := μ�̃KZ

. Let uKZ := κ(μ−1
KZ). Then J(μKZ) = 〈rKZ(x)+ rKZ(y)− rKZ(x ∗ y)〉, where

rKZ(u)=−∑

n≥2(2π i)−nζ(n)un/n, therefore

j(uKZ)= 〈φKZ(x)+ φKZ(y)− φKZ(x ∗ y)〉,
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where φKZ(u) = −∑

n≥2(2π i)−nζ(n)un. Now the real part of this function (obtained by
taking the real part of the coefficients of un) is

φR
KZ(u)=

1
2

(

u

eu − 1
− 1+ u

2

)

.

Let us now set uR := (AR(x, y),BR(x, y)), where the real part is taken with respect
to the natural real structure on fC

2 . Then by the linearity of (KV1), (KV3), we have:

(KV1) x+ y− y ∗ x= (1− e−ad x)(AR(x, y))+ (ead y − 1)(BR(x, y))

(KV3) j(uR)= 1
2

〈

x

ex − 1
+ y

ey − 1
− x ∗ y

ex∗y − 1
− 1

〉

.

7.3. Analytic aspects to the KV conjecture (proof of Theorem 5). — Recall that log �̃KZ ∈ f̂C
2 .

We denote the specialization of this series to the Lie algebra g as (log �̃KZ)
g ∈ g[[g2]]0.

Proposition 41. — (log �̃KZ)
g is an analytic germ, i.e., (log �̃KZ)

g ∈ g{{g2}}0.

Proof. — Recall that A2 = U(fC
2 ) is the free associative algebra in a, b. For x ∈ A2,

set

|x|A2 := supN≥1 supm1,m2∈MN(C)|||m1||,||m2||≤1 ||x(m1,m2)||.
Here || · || is an algebra norm on MN(C). Then |x|A2 is ≤∑

I∈⊔n≥0{0,1}n |xI|, where x =
∑

I xIeI, and for I= (i1, . . . , in), eI = ei1 · · · ein , e0 = a, e1 = b. It follows from the Amitsur–
Levitsky theorem [AL] that (|x|A2 = 0)⇒ (x= 0); indeed, by this theorem, x(m1,m2)= 0
for m1,m2 ∈MN(C) implies: (a) that x is in the 2-sided ideal generated by ab− ba if N= 1;
(b) that x = 0 if N > 1. It follows that |.|A2 is an algebra norm4 on A2, in particular
|xy|A2 ≤ |x|A2 |y|A2 .

We then define a vector space norm |.|f2 on fC
2 by |x|f2 := |x|A2 ; we have |[x, y]|f2 ≤

2|x|f2 |y|f2 .
For n= (n1, . . . , nd) ∈Nd , and f a formal series on (f2)

d (resp., Rd ), we denote by
f (ξ1, . . . , ξd)n (resp., f (t1, . . . , td)n) the n-multihomogeneous part of f , which we view as
a multihomogeneous polynomial on (fC

2 )d (resp., Rd ).

Lemma 42. — For any n, we have the identity

| log(eξ1 · · · eξd )n|f2 ≤ ((log(2− et1+···+td )−1)n)t1=|ξ1|f2 ,...,td=|ξd |f2
.

4 We will not use (|x|A2 = 0)⇒ (x = 0), so our proof of Proposition 41 is independent of the Amitsur–Levitsky
theorem.
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Proof of lemma. — We have for any n, |ξ n1
1 · · · ξ nd

d |A2 ≤ |ξ1|n1
f2
· · · |ξd |nd

f2
so

|(eξ1 · · · eξd − 1)n|A2 ≤ ((et1+···+td − 1)n)t1=|ξ1|f2 ,...,td=|ξd |f2
.

Then log(eξ1 · · · eξd )n = ∑

k≥1
(−1)k+1

k

∑

(n1,...,nk)|n1+···+nk=n(e
ξ1 · · · eξd − 1)n1 · · · (eξ1 · · ·

eξd − 1)nk
so

| log(eξ1 · · · eξd )n|A2 ≤
(

∑

k≥1

1
k

∑

n1+···+nk=n

(et1+···+td − 1)n1 · · ·

× (et1+···+td − 1)nd

)

t1=|ξ1|f2 ,...,td=|ξd |f2

=
(

∑

k≥1

1
k
((et1+···+td − 1)k)n

)

t1=|ξ1|f2 ,...,td=|ξd |f2

= ((log(2− et1+···+td )−1)n)t1=|ξ1|f2 ,...,td=|ξd |f2
. �

Let a(t) be a function [0,1]→ f̂C
2 of the form a(t)=∑

k≥1 ak(t), where ak(t) ∈ fC
2 [k]

(here k is the total degree in a, b) and
∫ 1

0 |ak(t)|f2dt <∞. Let u0, u1 be solutions of u′(t)=
a(t)u(t) with u0(0)= u1(1)= 1, and U := u−1

1 u0.

Lemma 43. — For n≥ 1, let (log U)n the degree n (in a, b) part of log U. Then
∑

n≥1

|(log U)n|f2r
n " log(2− e

∑

k≥1 rk
∫ 1

0 |ak(t)|f2 dt)−1.

Proof of lemma. — Let Lie(n) be the multilinear part of fC
n in the generators x1, . . . , xn.

We denote by wn(x1, . . . , xn) ∈ Lie(n) the multilinear part of log(ex1 · · · exn).
Let now αn be the coefficient of t1 · · · tn in the expansion of log(2− et1+···+tn)−1 (this is

also the nth derivative at t = 0 of log(2−et)−1). Specializing Lemma 42 for n= (1, . . . ,1),
we get the identity

|wn(ξ1, . . . , ξn)|f2 ≤ αn|ξ1|f2 · · · |ξn|f2

for ξ1, . . . , ξn ∈ fC
2 .

Now log U expands as

log U=
∑

n≥0

∫

0<t1<...<tn<1
wn(a(t1), . . . , a(tn))dt1 · · · dtn

(see e.g. [EG]). It follows that

(log U)k =
∑

n≥0

∑

k1,...,kn|∑i ki=k

∫

0<t1<...<tn<1
wn(ak1(t1), . . . , akn

(tn))dt1 · · · dtn
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and therefore

|(log U)k|f2 ≤
∑

n≥0

αn

∑

k1,...,kn|∑i ki=k

∫

0<t1<...<tn<1
|ak1(t1)|f2 · · ·

× |akn
(tn)|f2dt1 · · · dtn.

Now the generating series for the r.h.s. is log(2− e
∑

k≥1 rk
∫ 1

0 |ak(t)|f2 dt)−1, proving the result. �

According to [Dr], Section 2, if we set

a(t) :=
∑

k≥0,l≥1

1
k!l!(2π i)k+l+1

(− log(1− t))k(− log t)l

t − 1
(ad b)k(ad a)l(b),

then �̃KZ =U. We have |(ad b)k(ad a)l(b)|f2 ≤ k + l + 2≤ 2k+l+1, so

|an(t)| ≤
∑

k≥0,l≥1,k+l+1=n

1
π k+l+1k!l!

(− log(1− t))k(− log t)l

1− t
.

Then we have the inequality of formal series in r

∑

n≥1

rn

∫ 1

0
|an(t)|f2dt "

∫ 1

0

∑

k≥0,l≥1

rk+l+1

π k+l+1k!l!
(− log(1− t))k(− log t)l

1− t
dt

= r

π

∫ 1

0
(1− t)−1− r

π (t−
r
π − 1)dt.

Now the identity
∫ 1

0 ta(1− t)bdt = 	(a+1)	(b+1)

	(a+b+2)
, valid for %(a),%(b) >−1, implies that if

%(r) < 0, then

r

π

∫ 1

0
(1− t)−1− r

π (t−
r
π − 1)dt = 1

2

(

1− 	(1− 2r)2

	(1− 4r)

)

.

This implies that the radius of convergence of r

π

∫ 1
0 (1− t)−1− r

π (t−
r
π − 1)dt is 1/4, so this

series belongs to R+{{r}}0. Plugging this in Lemma 43, we get
∑

n≥0

|(log �̃KZ)n|f2r
n " log(2− e

1
2 (1− 	(1−2r)2

	(1−4r)
))−1,

where the series in the r.h.s. lies in R+{{r}}0 (being a composition of two series in R+{{r}}0).
Let us now prove that (log �̃KZ)

g ∈ g{{g2}}0 is an analytic germ. By Ado’s theorem,
there exists a injective morphism ρ : g→MN(k), where k=R or C, hence an injective
morphism ρ̃ : g→MN(C). Equip g with the norm |x|g := ||ρ̃(x)||. We recall that all the
norms on g are equivalent, so it will suffice to prove analyticity w.r.t. | · |g.
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The degree n part of the series (log �̃KZ)
g is the specialization to g of (log �̃KZ)n.

Now if ψ ∈ f2[n] and ψg : g × g→ g is its specialization to g, we have |ψg(x, y)|g =
||ψ(ρ̃(x), ρ̃(y))|| ≤ |ψ |f2 sup(||ρ̃(x)||, ||ρ̃(y)||)n = |ψ |f2 sup(|x|g, |y|g)n, therefore |ψg| ≤
|ψ |f2 . We then have

∑

n≥0

|(log �̃KZ)
g

n |rn "
∑

n≥0

|(log �̃KZ)n|f2r
n " log(2− e

1
2 (1− 	(1−2r)2

	(1−4r)
))−1;

together with the fact that the series in the right has positive radius of convergence, this
implies the analyticity of the series (log �̃KZ)

g. �

Proposition 41, together with the local analyticity of the CBH series, implies that
the specialization of μ�̃KZ

belongs to Tautan
2 (g). It follows that A(x, y), B(x, y) are analytic

germs, and so
(KV2) (AR,BR) is an analytic germ g2→ g2.
All this implies that (AR,BR) is a solution of the ‘original’ KV conjecture (as for-

mulated in [KV]) and proves 1) in Theorem 5.
Let us now prove Theorem 5, 2). One checks easily that if (A,B) is a solution of

the ‘original’ KV conjecture, then (As,Bs) := (A+ s(log(exey)− x),B+ s(log(exey)− y))

is a family of solutions. In fact, if μ ∈ SolKV(k) and (A,B)=−κ(μ−1), then (As,Bs)=
−κ(μ−1

−s ), where μs := Inn(es(x+y)) ◦μ; this corresponds to the action of ‘trivial’, degree 1
element of krv on SolKV(k) (see [AT2]).

Finally, let us prove Theorem 5, 3). Let σ be the antilinear automorphism of f̂C
2

such that σ(x) = −y, σ(y) = −x. The series �KZ(x, y) is real, therefore �̃KZ(x, y) =
�̃KZ(−x,−y) (the bar denotes the complex conjugation). This implies that θ(μKZ)σ =
Inn(e−(x+y)/2)σθ(μKZ). Using σ�σ−1 = � and �(x+ y)= x+ y, we get

(θ(μKZ)σθ(μKZ)
−1)�(θ(μKZ)σθ(μKZ)

−1)−1 = �+ inn
(

1
2
(x+ y)

)

,

where inn(x+ y) is the inner derivation z �→ [x+ y, z] of f̂C
2 . Using now θ(μKZ)

−1(x+ y)=
log(exey), we get

(σθ(μ−1
KZ))�(σθ(μKZ)

−1)−1 = θ(μKZ)
−1�θ(μKZ)+ inn

(

1
2

log(exey)

)

.

Since σ�σ−1 = �, θ(μKZ)
−1�θ(μKZ) − � = −(AKZ,BKZ) and inn( 1

2 log(exey)) =
( 1

2(log(exey)− x), 1
2(log(exey)− y)), this implies

σ(AKZ,BKZ)σ
−1 = (AKZ,BKZ)−

(

1
2
(log(exey)− x),

1
2
(log(exey)− y)

)

.
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This implies

(BKZ(−y,−x),AKZ(−y,−x))

= (AKZ(x, y),BKZ(x, y))−
(

1
2
(log(exey)− x),

1
2
(log(exey)− y)

)

.

If now (A′,B′) := (AKZ,BKZ)− 1
4(log(exey)− x, log(exey)− y), this implies

(B′(−y,−x),A′(−y,−x))= (A′(x, y),B′(x, y)),

which by taking real parts implies (B−1/4(−y,−x),A−1/4(−y,−x)) = (A−1/4(x, y),

B−1/4(x, y)), proving Theorem 5, 3).
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Appendix A: The morphism GT1(k) → KV(k), cocycle identities and
profinite versions

We will show:

Proposition 44. — For f ∈GT1(k), αf defined in Theorem 9 satisfies the cocycle identity

(25) f (log x12, log x23) ◦ α
˜12,3

f ◦ α
1,2
f = α

˜1,23
f ◦ α

2,3
f

in Taut3(k) (see Section 3.4 and the end of the Introduction).

The group GT1(k) admits profinite and pro-l versions. We show that:

Proposition 45. — The morphism f �→ α−1
f admits variants in these setups, which fit in a

commutative diagram

̂GT1 → GTl
1 → GT1(Ql)

↓ ↓ ↓
̂Taut2→Taut2,l→Taut2(Ql)

and satisfy analogues of (25).
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A.1 Proof of Proposition 44. — The action of f ∈ GT1(k) on � ∈M1(k) has been
defined in the Introduction. Then μf ∗� = μ�αf and μ�(exey)= ex+y, hence μ

12,3
f ∗�μ

1,2
f ∗� =

μ
12,3
� μ

1,2
� α

˜12,3
f α

1,2
f and μ

1,23
f ∗�μ

2,3
f ∗� = μ

1,23
� μ

2,3
� α

˜1,23
f α

2,3
f .

Now

(f ∗�)(t12, t23)μ
�
•((••)•) =�(t12, t23)f (t12,�

−1(t12, t23)t23�(t12, t23))μ
�
•((••)•)

=�(t12, t23)μ
�
•((••)•)f (log x12, log x23)

as t12μ
�
•((••)•) = μ�

•((••)•) log x12, t23μ
�
•(•(••)) = μ�

•(•(••)) log x23, and �(t12, t23)μ
�
•((••)•) =

μ�
•(•(••)).

Therefore

(f ∗�)(t12, t23)μ
12,3
f ∗�μ

1,2
f ∗� = (f ∗�)(t12, t23)μ

�
•((••)•)α

˜12,3
f α

1,2
f

=�(t12, t23)μ
�
•((••)•)f (log x12, log x23)α

˜12,3
f α

1,2
f ,

while μ
1,23
f ∗�μ

2,3
f ∗� = μ

1,23
� μ

2,3
� α

˜1,23
f α

2,3
f = μ�

•(•(••))α
˜1,23

f α
2,3
f .

Proposition 44 then follows from (f ∗ �)(t12, t23)μ
12,3
f ∗�μ

1,2
f ∗� = μ

1,23
f ∗�μ

2,3
f ∗� and

�(t12, t23)μ
�
•((••)•) = μ�

•(•(••)).

A.2 Proof of Proposition 45. — Let us denote by ̂G and Gl the profinite and pro-
l completions of a group G. The set of equations defining the group GT1(k) may be
viewed as a map F2(k)→ F2(k)2 × PB4(k). Replacing it by maps ̂F2→̂F

2
2 ×̂PB4 and

F2,l→ (F2,l)
2×PB4,l , we define semigroups ̂GT1 and GT1,l . We define ̂GT1 and GT1,l as

the corresponding groups. We have natural maps ̂GT1→GT1,l ↪→GT1(Ql) (see [Dr]).
The definitions of the semigroup TautS and of the semigroup morphism

θ : TautS→ End(FS) from Section 3.3 extend to the profinite and pro-l case. We denote
by ̂TautS and TautS,l the corresponding semigroups. The contravariant functor structure
of S �→ ̂TautS,TautS,l is defined as in Section 3.4.

Identity (25) can be proved directly, checking the identity on each of the generators
of F3(k) and using only the duality, hexagon and pentagon relations. Extending this proof
to the profinite and pro-l cases, one shows that if α̃f = (f (X1,X−1

1 X−1
1 ), f (X2,X−1

1 X−1
1 )),

then α̃
2,3
f α̃

˜1,23
f f (x12, x23)= α̃

1,2
f α̃

˜12,3
f and α̃ff ′ = α̃f ′α̃f .

Appendix B: μ�,O and its Jacobian

B.1 Telescopic formulas. — If O ∈ Ob(PaB) has the form O = • ⊗ O′, with
|O′| = n, then one proves by using (17) that μO expresses directly in terms of μ�, for
example

μ•((((••)(••))(•(••)))(••)) = μ
1234567,89
� μ

1234,567
� μ

8,9
� μ

12,34
� μ

5,67
� μ

1,2
� μ

3,4
� μ

6,7
� .
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FIG. 4. — There are 8 nodes

The general formula is

μ•⊗O′ =
∏

n≥0

∏

ν∈N(T′),d(ν)=n

μ
L(ν),R(ν)

� ;

here T′ is the binary planar rooted tree underlying O′; N(T′) is the set of its nodes; d(ν)

is the degree of ν (distance to the root of the tree); L(ν), R(ν) is the set of left and right
leaves of ν (these are disjoints subsets of {1, . . . , n}). The first product is taken according to
increasing values of n (the order in the second product does not matter as the arguments
of this product commute with each other). Here is the tree corresponding to the above
example (Figure 4):

B.2 Computation of Jacobians. — Let μn := μ•(•...(••)). Then:

Proposition 46. — J(μn)= 〈∑n

i=1 log	�(xi)− log	�(
∑n

i=1 xi)〉.
(We identified μn with its composition with exi �→Xi , which belongs to TAutn.)

Proof. — We have μn = μ
1,2...n
� ◦μ

2,3...n
� ◦ · · · ◦μ

n−1,n
� . One then proves by descend-

ing induction on k that J(μk,k+1...n
� ◦ · · · ◦ μ

n−1,n
� ) = 〈∑n

i=k log	�(xi) − log	�(
∑n

i=k xi)〉,
using the fact that the action of μ

k,k+1...n
� on the various 〈log	�(xi)〉 as well as on

〈log	�(
∑n

i=k xi)〉 is trivial. �

If now O ∈Ob(PaB) is arbitrary with |O| = n+ 1, then:

Proposition 47. — J(μ�,O)= J(μn)= 〈∑n

i=1 log	�(xi)− log	�(
∑n

i=1 xi)〉.
Proof. — We have μO = Ad�On,O◦μn, where On = •(. . . (••)). We then use the co-

cycle property of J, the above formula for J(μn), the fact that J(Ad g)= 0 for g ∈ exp(t̂n+1),
and the following lemma:

Lemma 48. — If g ∈ exp(t̂n+1), then (Ad g)(x1 + · · · + xn) is conjugate to x1 + · · · + xn.
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Proof of lemma. — Decompose a ∈ tn+1 as a0 + a
1,2,...,n
1 , with a0 ∈ fn and a1 ∈ tn (the

map a1 �→ a
1,2,...,n
1 is the injection tn → tn+1, tij �→ tij ). Then [tij, x1 + · · · + xn] = 0 for

i, j ∈ {1, . . . , n}, so [a1,2,...,n
1 , x1 + · · · + xn] = 0, so [a, x1 + · · · + xn] = [a0, x1 + · · · + xn].

It follows that if g ∈ exp(t̂n+1), there exists xg ∈ exp(f̂n) such that (Ad g)(x1 + · · · + xn)=
xg(x1 + · · · + xn)x

−1
g . �

Remark 49. — In [AT2], the Lie subalgebra sdern ⊂ tdern of special derivations
(normalized special in the terms of Ihara) was introduced: sdern = {u ∈ tdern|u(x1+ · · ·+
xn) = 0}. Let ˜sdern be the intermediate Lie algebra ˜sdern = {u ∈ tdern|∃u0 ∈ fn−1|u(x1 +
· · · + xn) = [u0, x1 + · · · + xn]} (special derivations in Ihara’s terms). So sdern ⊂ ˜sdern ⊂
tdern. Then Lemma 48 says that we have a diagram

tn → sdern

↓ ↓
tn+1→ ˜sdern ↪→ tdern

Remark 50. — Set SolKVn(k) := {μn ∈ TAutn |μn(e
x1 · · · exn) = ex1+···+xn and ∃r ∈

u2k[[u]]|J(μn)= 〈r(∑i xi)−∑

i r(xi)〉}. This is a torsor under the action of the groups

KVn(k) :=
{

αn ∈TAutn |αn(e
x1 · · · exn)= ex1 · · · exn

and ∃σ ∈ u2k[[u]]|J(α)=
〈

σ(log ex1 · · · exn)−
∑

i

σ(xi)

〉}

and KRVn(k), which is similarly defined (replacing ex1 · · · exn by ex1+···+xn ). These are
prounipotent groups; the Lie algebra of KRVn(k) is krvn := {u ∈ tdern|a(∑i xi) = 0
and ∃s ∈ u2k[[u]]|j(a) = 〈s(∑i xi) −∑

i s(xi)〉}. It contains as a Lie subalgebra krv
0
n :={a ∈ krvn|s = 0}, which is denoted kvn in [AT2]. One can prove that if |O′| = n and

O= •⊗O′, the map M1(k)→ SolKVn(k), � �→ μ�,O is a morphism of torsors.

Appendix C: Computation of a centralizer

In this section, we compute the centralizer of tij in tn. This result is used in the proof of
Theorem 30.

Proposition 51. — Let i < j ∈ [n]. If x ∈ tn is such that [x, tij] = 0, then there exists λ ∈ k
and y ∈ tn−1 such that x= λtij + yij,1,2,...,ǐ,...,ǰ,...,n.

Proof. — We may and will assume that i = 1, j = 2. We then prove the result by
induction on n. It is obvious when n = 2. Assume that it has been proved at step n− 1
and let us prove it at step n. We have tn = tn−1 ⊕ fn−1, where tn−1 is the Lie subalgebra
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generated by the tij , i �= j ∈ {1, . . . , n− 1} and fn−1 is freely generated by the t1n, . . . , tn−1,n.
Both tn−1 and fn−1 are Lie subalgebras of tn, stable under the inner derivation [t12,−].
Then if x ∈ tn is such that [t12, x] = 0, we decompose x = x′ + f , with x′ ∈ tn−1, f ∈ fn−1,
[t12, x′] = [t12, f ] = 0. By the induction hypothesis, we have x′ = λt12+ (y′)12,3,...,n−1, where
y′ ∈ tn−2 and λ ∈ k.

Let us set xi = tin for i = 1, . . . , n − 1. The derivation [t12,−] of fn−1 is given by
x1 �→ [x1, x2], x2 �→ [x2, x1], xi �→ 0 for i > 2. In terms of generators y1 = x1, y2 = x1 + x2,
y3 = x3, . . . , yn−1 = xn−1, it is given by y1 �→ [y1, y2], yi �→ 0 for i > 1.

Lemma 52. — The kernel of the derivation y1 �→ [y1, y2], yi �→ 0 for i > 1 of fn−1 coincides

with the Lie subalgebra fn−2 ⊂ fn−1 generated by y2, . . . , yn−1.

Proof of Lemma. — Let us prove that the kernel of the induced derivation of U(fn−1)

is U(fn−2). We have a linear isomorphism U(fn−1)�⊕

k≥1 U(fn−2)
⊗k , whose inverse takes

u1 ⊗ · · · ⊗ uk to u1y1u2y1 · · · y1uk . The derivation [t12,−] of U(fn−1) is then transported to
the direct sum of the endomorphisms of U(fn−2)

⊗k

(26) u �→ (y
(2)

2 + · · · + y
(k)
2 )u− u(y

(1)

2 + · · · + y
(k−1)

2 )

(this is 0 of k = 1; y
(i)
2 = 1⊗i−1 ⊗ y2 ⊗ 1⊗k−i; we make use of the algebra structure of

U(fn−2)
⊗k ). Each of these endomorphisms has degree 1 for the filtration of U(fn−2)

⊗k

induced by the PBW filtration of U(fn−2) (the part of degree ≤ d of U(fn−2) for this
filtration consists of combinations of products of ≤ d elements of fn−2) and the associated
graded endomorphism of S(fn−2)

⊗k is the multiplication by y
(k)
2 − y

(1)

2 , which is injective
if k ≥ 1, so (26) is injective for k ≥ 1; the kernel of the direct sum of maps (26) therefore
coincides with the degree 1 part U(fn−2), which transports to U(fn−2)⊂U(fn−1). So the
kernel of the derivation [t12,−] of U(fn−1) is U(fn−2). The kernel of the derivation [t12,−]
of fn−1 is then fn−1 ∩U(fn−2)= fn−2. �

End of proof of Proposition 51. — It follows that f expresses as P(t1n+ t2n, t3n, . . . , tn−1,n).
Then if we set f ′ := P(t1,n−1, . . . , tn−2,n−1), we get f = (f ′)12,3,...,n so x = x′ + f = λt12 +
((y′)1,2,...,n−1 + f ′)12,3,...,n, as wanted. �
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