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ABSTRACT

The Kashiwara—Vergne (KV) conjecture states the existence of solutions of a pair of equations related with the
Campbell-Baker-Hausdorft series. It was solved by Meinrenken and the first author over R, and in a formal version, by
two of the authors over a field of characteristic 0. In this paper, we give a simple and explicit formula for a map from the
set of Drinfeld associators to the set of solutions of the formal KV equations. Both sets are torsors under the actions of
prounipotent groups, and we show that this map is a morphism of torsors. When specialized to the KZ associator, our
construction yields a solution over R of the original KV conjecture.

Introduction and main results

The Rashiwara—Vergne comjecture. — The desire to understand Duflo’s theorem ac-
cording to which there is an algebra isomorphism U(g)? 2~ S(g)?, where g is a finite
dimensional Lie algebra over k = R or G, led Kashiwara and Vergne to the following
conjecture:

Comgecture 1 (See [KV]). — For g as above, there exusts a pair of Lie series A(x, ), B(x, ) €
i, such that:

(KVI) x+y—log(¢e") = (1 — ¢ *)(A(x, ) + (&Y — D(B(x,);
(KV2) A, B give convergent power series on a neighborhood of (0, 0) € g*;
(KV3) trg((ad0)d,A + (ady)d,B) = S urg(H + 525 — 45— 1) (identity of

Ady_1 adz_ ]

analytic functions on g* near the origin), where z = loge'e and for (x,y) € g°,

(0,A)(x,») € End(g) w5 ar> %u:oA(x + ta,y), (0,B)(x,»)(a) = %u:oB(x’y +
la).

Here %‘ is the topologically free k-Lie algebra with generators x, y. For k = R,
this conjecture implies an extension of the Duflo isomorphism to germs of invariant dis-
tributions on the Lie algebra g and on the corresponding Lie group G (the product on
distributions being defined by convolution). This extension was first proved in [AST],
independently of the KV conjecture.

The KV conjecture triggered the work of several authors (for a review see [12]).
In particular, Kashiwara—Vergne settled it for solvable Lie algebras [KV], Rouviére gave
a proof for sl [R], and Vergne [V] and Alekseev—-Meinrenken [AMI] proved it for
quadratic Lie algebras; it turns out [AT1] that in the latter case all solutions of equa-
tion (KV1) solve equation (KV3). All these constructions lead to explicit formulas for
solutions of the KV conjecture, which are both rational and independent of the Lie al-
gebra g in the considered class. The general case was settled in the positive by Alekseev—
Meinrenken [AMZ2] using Kontsevich’s deformation quantization theory and results in
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[T1]. The corresponding solution (A, B) is universal, i.e., independent of the Lie alge-
bra g; the series A, B are defined over R, and expressed as infinite series where coefficients
are combinations of Kontsevich integrals on configuration spaces and integrals over sim-
plices. The values of most of these coefficients remain unknown.

An approach based on associators. — In [AT2], two of the authors proposed a new
approach to the KV problem, related to the theory of Drinfeld associators [Dr]. Re-
call first that an associator with coupling constant 1 defined over a Q:ring k is a series

®(x,7) € exp(f%), such that

1
log ®(x, ) = —ﬁ[x,y] + terms of degree > 2,

(1) Dy, x) = P(x, )", D (x,9)e /2D (—x —y, x)e D (y, —x — ) =1,

(2) D (lo3, 134) P (tio + ti3, tos + 13) P (L9, log) = P (b1, log + boa) P (ty3 + og, 134),

the last relation taking place in the group exp(ﬂf), where t¥ is the k-Lie algebra with gen-
erators /;, 1 < 1#j <4 and relations #; = ¢; and [4;, ty + t;] = [4;, tu] = 0 for 4,5, &, [
distinct; %‘; is its degree completion, where the generators #; have degree I; and if a
is a pronilpotent Lie algebra, the group exp(a) is isomorphic to a, equipped with the
Campbell-Baker-Hausdorff product.

We now describe the approach of [AT2]. For any set S, let f§ be the free k-Lie
algebra generated by S and %IS‘ its degree completion (where elements of S have degree 1).

We define a group structure on Tautg(k) := exp(?ls‘)S as follows: we have a map
0 : Tautg(k) — Aut(exp(]ag)), given by g = (g),es > 0(g) = (¢' = Ad, (¢')). We set go
h =k, where k; := 0(g)(h;)g,. Then 6 is a group morphism.

We define a Lie algebra structure on tbetg = (]cg)s by [u, v] = w, where w, =
dO (u)(v,) — dO (v) (u,) + [u,, v,], and d6 : tDeté‘ — Der(ﬂ;) maps u = (i;),es to d0(u) : s +—
[4,, s]. The map d6 is then a Lie algebra morphism. The degree completion t’b\etls{ of
to et;‘ is the Lie algebra of Tautg (k).

The Lie algebra té‘ is presented by generators y, s # s’ € S, and relations fy, = 4y,
[ty + by, by =0, [ty, tyyr] =0 for s, ..., s"” distinct. We then have an injective Lie
algebra morphism t's‘ — tbet‘s‘, taking 4y to fy € 10 et‘s‘ defined by (4y), = —5', (Ly)y = —s,
(ty)y =0fors" #s,5.

The assignments S — flq‘, té‘, Tautg (k), tbetg, can be made into contravariant
functors from the category S of sets and partially defined maps, to that of Lie alge-

bras and groups. For T D D, %Sa morphism in S, the corresponding morphisms
are (a) ¢* : fs — f§, s> Zteqb_l(s) t; (b) ¢ 8 — tf, > Zteq‘)_l(s),t/eqb_l(y’) tw; (c)
¢* : Tauts(k) — Tauty(k), g = (g,),es F> g2 = h= (k) e, where b, = ¢*(g5)). I P (1) is
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undefined, then g4, = 1; (d) ¢* : toerk — tderk is defined in the same way, with ug,) =0
for ¢ (¢) undefined.

When S = [#] = {1, ..., n}, Tauts(k), tdets, &, t& are denoted simply Taut,(k),
toer®, % % and the generators of f* are denoted x,...,x,. We use the nota-
tion g"’_l(l)"“*")_l(") for g?. Thus the maps Tauty(k) — Tauts(k) are p > u'*? u*3,
etc., where for p = (a;(x, x9), as(x1, x0)), we have p'?? = (a;(x; + %o, x3), a; (x; +
X9, X3), ag(x + X, x3)), M“ = (1, a1 (xg, x3), ag(x2, x3)), etc.

The first result of [AT2] can be formulated as follows:

Theorem 2 ([A12], Theorem 7.1). — For every associator ® over k with coupling constant
1, there exists o € Tauty (K) such that

3) Dty bos) o gy O g’ = g 0 g

holds i Tauts (k).

Let £ be the ‘grading’ derivation of %‘ defined by £(x;)) = x; for t =1,2. It is
proved in [AT2] that 6(ue)~"€0(1e) — € € Im(Qers > DAer(]aQ‘)). Set the identifi-
cation (x,7) = (x, x9). There is a unique pair (Ag, By) € (]dz‘)2 such that Ag (resp.,
Bs) has no constant term in x (resp., ») and 0(ue) '€0(1ne) — £ = d9(Ag, Be). We
have d0(Ag, Bo) = 0(12a) "4 _ 0(uly), where for 1t = (a1(x,3), ar(x,) € Tauty(k),

dt|1=1
w' = (a (ix, y), ag (ix, ).
The next result of [AT?2] 1s:

Theorem 3 (|AT2], Theorems 7.1 and 5.2). — (Ag, Bo) satisfy (KV1), and (KV3) in
i

which — s replaced by a formal power series with even part = — 1 — 3

Using the nonemptiness of the set of associators [Dr] and the action of a group
KV (k), the authors of [AT2] then construct joint solutions of (KV1) and (KV3).

The main results. — The automorphism pe in Theorem 2 is constructed by an in-
ductive procedure. The first result of this paper is a simple formula for pte:

Theorem 4. — g := (P (x, —x — p), e 2D (y, —x — 9)e’'?) is a solution of (3).

The formula for pe, as well as the proof of the identity e (e'¢’) = ¢, which is
a consequence of (3), were suggested to us by D. Calaque; a similar formula has been
discovered independently by M. Boyarchenko [Bo].

The proof of Theorem 4 sheds some light on the relations between associators and
the KV theory:. It relies on the following facts:
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(a) the geometric/categorical aspect of associators, namely the fact that an associ-
ator gives rise to a compatible system of isomorphisms between completions of
pure braid groups and explicit prounipotent Lie groups;

(b) the relations between free groups and pure braid groups, more precisely the
fact that the free group with n — 1 generators F,_; is a normal subgroup of the
pure braid group with 7 strands PB,; the geometric origin of this fact lies in
the Fadell-Neuwirth fibration Cf,(CG) — Cf,_,(C), where Cf,(C) = {injective
maps [7] — C} is the configuration space of n points in C.

Let @k, € exp(%:) be the Knizhnik—Zamolodchikov (KZ) associator (see [Dr]); its

normalized version @y, (x,9) = @Kz(#, %) 1s an associator with coupling constant 1,
and it may be defined as the holonomy from 0 to 1 of the ordinary differential equation
G ()= #(’—; + ﬁ)G(t). Let (Akz, Bkz) := (Ag,,» Bs,,) and define (Ag, Br) as the real
part of (Akz, Bkz) (with respect to the canonical real structure of f?) Then:

Theorem 5. — (1) (Ag, Br) satisfies (KV1), (KV2) and (KV3) for any finite dimensional
Lie algebra g and is therefore a universal solution of the KV conjecture.

(2) Forany t € R, (A, B,) := (Ar + t(log(e'¢’) — x), Br + t(log(e'¢’) — »)) is a universal
solution of the KV conjecture.

(3) When t = —1/4, we have (A(x,7). B(x,9)) = (Bi(—y, —x), A=y, —x)).

A scheme morphism M, — SolKV. — A key ingredient of [AT2] is a Q-scheme
SolKV. Its definition relies on the notions of non-commutative divergence and Jacobian,
which we now recall.

If S is a set and k is a Q:-ring, let ‘ZIS‘ = U(f};)/[U(f‘S‘),U(ﬂS‘)] be the space
spanned by all cyclic words in S; the map U(f%¥) — %% is denoted x > (x). The ‘non-
commutative divergence’ map J : tbetls‘ — ‘Z]Sf is defined by j(u) := () ¢ $9,(u,)) for
u = (u,),es, where 0, : Uggk) — U(fsk) is defined by the identity x = e(x)1 + > ¢ 9,(x)s
(where ¢ : U(f§) — k is the counit map). The authors of [AT2] then show the existence

of a ‘non-commutative Jacobian’ map J : Tauts(k) — ‘i"; (here @S‘ is the degree comple-
tion of T¥, the elements of S being of degree 1), uniquely determined by J(1) = 0 and

%u:ol (") =j(x) + x - J(g) for g € Tauts(k) and x € 6\&2{ (the natural action of 6&: on
@S‘ being understood in the last equation). Then j and ] satisfy the cocycle identities

Jwv) =u-j(w) —v-j@) and J(hog) =]J() +h-]J(Q).
The scheme SolKV is defined by

SolKV (k) := {1 € Tauty(k)|0 (u)(¢'¢) = ¢
and 3r € ’k([[u]], J(n) = (r(x+2) — r(x) — r()) }.
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As the map ’k[[u]] = Ty, r — (r(x + ) — r(x) — r(p)) is injective, there is a well-
defined map Duf: SolKV (k) — «’k[[«]], i —> r, which we call the Duflo map. It is
proved in [AT?2] that any u € SolKV (k) gives rise to a solution (A, B) of both (KV1)
and (KV3) in which = is replaced by t%(t). This solution 1s given by the formula
dO(A,B)=pu"eu — L.

Recall that the scheme M, of associators with coupling constant 1 is defined by

M; (k) = {® € exp(f¥) satisfying (1) and (2)}.

Proposition 6. — The map @ — o ts a morphism of Q-schemes M, — SolKV.

In order to study the relation of this morphism with the Duflo map, we recall the
following result on associators (see [D'T, E], and also [Ih]): for any ®(x, y) € M, (k), there
exists a formal power series I'q (v) = enz2 ("D M/n qch that

. I <I>(% +)}_)
4 1 8@ , ab ,
< ) ( 7 ’ (x y)) I <1>(%)I @@)

where & > &% is the abelianization morphism k((x, »)) — k[[x, 7]]. The values of the
{o(n) for n even are independent of ®; they are expressed in terms of Bernoulli numbers

1 u

by ¢o(2n) = —% (1;2;)11 for n> 1, so there is an identity for generating functions —3 (745

I+ 9=, Co@nu? (we have £o(2) = —1/24, Lo (4) = 1/1440, etc)

Proposition 7. — J(ie) = (logTe(x) + logle(p) — logTe(x + 7)), so Duf(ie) =
—log ' We therefore have a commutative diagram

P>

M, (k) — SolKV(k)
©) Plogly 3 Dur

, 1)x
{r e wk[[ulllr,(w) = _;_i + 1110

+o) T kil
where 1,,(u) 1s the even part of r(u).

Torsor aspects. — Let us set
KV(k) = {o € Taut, (k) |0 (o) (¢'¢) = ¢
and 30 € Kl [ul], J(@) = (o (log("¥)) — () — 7))},
and
KRV (k) := {a € Tauty (k) |6 (a)(¢) = ¢
and 35 € ’k([[«]], J(a) = (s(x +) — s(x) —s0)) };

we call KV (k) the Kashiwara—Vergne group, while KRV (k) is its graded version. As be-
fore, we will denote by Duf: KV (k) — «’k[[«]], KRV (k) — «’k[[«]] the maps a > o,
ar>s.
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Proposition 8. — KV (k) and KRV (k) are subgroups of Tauty(k), and Duf : KV (k) —
w’k[[u]], KRV (k) — «*Kk[[u]] are group morphisms. SOIKV (k) is a torsor under the commuting lefi
action of KV (k) and right action of KRV (k) given by (o, o) +> o™ and (i, a) > a~' o p,
and Duf : SolKV (k) — w’k[[u]] is a morphism of torsors.

In particular, every element of SolKV (k) gives rise to an isomorphism £v — £rv
between the Lie algebras of these groups, whose associated graded morphism is the
canonical identification gr(fv) = £rv.

The prounipotent radical of the Grothendieck—Teichmiiller group is

GTi () = {f € exp(If 0 1) =/ (x.0) ",
S p)f(oge=e™, x)f (y,logee™) =1,
J (623, 834)f (log 126, log &2 €Sg4)f($12, &23)
=/ (§19, log ¢ ¢)f (log ¢, £3.) },

where the last equation holds in the prounipotent completion PB4 (k) of the pure braid
group in four strands PBy; x; = (0j_o - -al-)_lq;-Q_l(q]-_Q ---0;) where o, 0y, 03 are the
Artin generators of the braid group in four strands B, and &; = logx; (here x; is iden-
tified with its image under the canonical morphism PB; — PB4(k) and log : PB,(k) —
Lie PB, (k) is the logarithm map, which is a bijection between a prounipotent Lie group
and its Lie algebra). It is equipped with the product (f; *£5) (x, ) =_fi (Adp (v (¥), 2)fa (x, 9).
Its graded version is

GRT, (k) = {g(x,y) € exp(ﬂ‘) 160, Dg(x, ) =1,
Adg(&*x*)’) (X) + Adg(}’,*xfy) ()}) =X +y’
g0, )g(=x — 9, 0)g(, —x — y) = 1, and ¢ satisfies (2)}

with product (g, * g2) (%, ) = g1 (Adyyx,) (¥), 7)) g2 (x, ).
It 1s proved in [Dr] that M, (k) is a torsor under the commuting left action of

GT (k) and right action of GRT (k) by (f, ®) = (f*®)(x, ) :=f (Ade ) (x),)) P(x, )

and (CD, g) = (CD *g) (xa))) = CD(Adg(x,y) (x),)))g(xd))
The following Theorem 9 and Proposition 10 express the torsor properties of the
map ¢ — ue.

Theorem 9. — There are unique group morphisms G'T', (k) — KV(k), f ozf_l, where
ay = (f(x,loge™e ™), f(y,loge”e™™)),
and GRT (k) - KRV, (k), g — ag_l, where

ag(x) = (g(x, —x — ), gy, —x — ).
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These group morphisms are compatible with the map M, (k) — SolKV (k), which is therefore a
morphism of torsors.

Proposition 10. — The diagram (5) ts a diagram of torsors, where the sets in the lower line are
viewed as affine spaces.

In Appendix A, we show that o, satisfies the cocycle identity

12,3 1,2 1,23 2.3
(6) f(logxlg,logxgg)oaf oo =a T oa

in Tauts(k), where for o = (o1 (x1, x9), @ (x1, x0)) € Tauty(k), we set
051’2\’43 = (a1 (loge" e, x3), a1 (loge™ €, x3), ag(loge™ e, x3))

and a2 1= (oty (1, loge?e®), oo (x1, loge?e®), oo (x1, loge?e®)), and x)9, x93 € Tauts(k)
are the images of xjy = 02, xp3 = 022 under the natural morphism PBs; — Tauts(k) (see
Proposition 19), given by x19 = (¢7*2, ¢ ?¢™, 1) and x93 = (1, ¢, 7).

The group GT, (k) admits profinite and pro-/ versions, where [ is a prime num-
ber. The morphism f afl admits variants in these setups, which satisfy analogues
of (6) (in the profinite setup, identity (6) was independently obtained by P. Lochak and
L. Schneps [LS]).

Appendix B is devoted to the study of the following problem: Theorem 4 is proved
by studying restrictions (o to free groups of morphisms fio between braid groups and
their infinitesimal analogues, where O is a parenthesized word with 7 identical letters. We
express (Lo and its Jacobian using [lees) = o and I'e.

Finally, Appendix C is devoted to the computation of centralizers in infinitesimal
analogues of pure braid groups, which are used in the proof of Theorem 4.

Organization. — In Section 1, we recall the relations between associators and
1-formality isomorphisms for braid groups. In Section 2, we study the relation between
these isomorphisms. In Section 3, we recall the relations between braid and free groups.
In Section 4, we show that these isomorphisms give rise to the tangential automor-
phism pe; using the results of Section 2, we show a key relation satisfied by pe. This
enables us to prove Theorem 4 and Propositions 6 and 7 in Section 5. In Section 6, we
prove Proposition 8, Theorem 9 and Proposition 10 on the group and torsor aspects of
our work. In Section 7, we study the analytic aspects of our construction, which enables
us to prove Theorem 5.

1. Associators and 1-formality of braid groups

In [Dr], Drinfeld showed that associators give rise to 1-formality isomorphisms for
braid groups. This statement was reformulated by Bar-Natan in the framework of braided
monoidal categories [B]. This section is devoted to an exposition of this material.
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1.1. (Brawded) (strict) monoidal categories. — Recall that a monoidal category is a cate-
gory C, equipped with a bifunctor ® : C x C — C, a unit object 1 and a natural constraint
axy.z €Isoc(X®Y)®Z,X® (Y ®Z)) such that

ax,y,ze10xey,z,1 = (1dx Qay 7 v)ax vez,v(ax,y,z ® idr).
A braiding is then a natural constraint Bx y € Isoc(X ® Y, Y ® X), such that
. + + crN +
(idy ®Bx yay x.z(Bxy ®idz) = ay.z.xBX vez0x.Y.2

where B¢ ¢ = Bxy while 5y = By k. It is called strict if the trifunctors ® o (® x id) and
®o (idxX®) :C x C x C — C coincide and ax vz = idxgyez-

Let B, be the braid group in n strands. We recall its Artin presentation: the gen-
erators are 07, ..., 0, and the relations are 0;0;;,0; = 0;4,0,0,4, and 0,0; = 0;0; for
|t —7] > 1. Recall that the symmetric group &, has generators sy, ..., s, and the same
relations, with the additional 51»2 =lfor:=1,...,n— 1. We therefore have a morphism
B, — G,, 0, 5. The pure braid group in 7 strands is PB, := Ker(B, — &,); it is the
smallest normal subgroup of B, containing ¢ fori=1,...,n— 1.

A braided monoidal category (b.m.c.) C then gives rise to morphisms B, —
Aute(X®"), where X®" is defined inductively by X® =1, X®" = X ® X®"!  given
by 0; - a; ' (idge1 ®Bx x ® idgxer1-1)a;, where g; : X®" — X®~! @ X&? @ X&~1-i j5
the morphism constructed from the associativity constraints (this morphism is unique by
McLane’s coherence theorem). A b.m.c. also gives rise to morphisms PB, = Aut¢(X; ®

.®X,).

1.2. The categories PaB, PaCD. — In []S], Section 2, Joyal and Street introduced
the free braided monoidal category F,(A) generated by a small category A. For S a set,
let Ag be the category with Ob(Ag) =S, and

_dg} ife=s,
Homu (s, )= {@ otherwise.
We set PaBg := F,(As) and for S = {e}, PaB := PaB,,,. These are the free b.m.c.’s
generated by S (resp., by one object e).

The category PaB coincides with Bar-Natan’s category of parenthesized braids [B],
which can be described explicitly as follows. Its set of objects is Par =| | _,Par,, where
Par, is the set of parenthesizations of the word e - - - & (1 letters); alternatively, the set of
planar binary trees with n leaves (we will set |O| = n for O € Par,). The object with n =0

is denoted 1. Morphisms are defined by'

B, if|O|=]0=n,

PaB(O’O)::{w if10] #0/;

VI C is a category and X € ObC, we set C(X, X) := Hom¢ (X, X').
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o, ¢

N

1

R RN =
2

Oy

s

Fi16. 1. — Braiding in PaB

the composition is then defined using the product in B,,.

PaB is a braided monoidal category (see e.g. [JS]), where the tensor product of
objects is (n, P) @ (', P') := (n+ ', P x P’) (where P x P’ is the concatenation of paren-
thesized words, e.g. for P = ee and P’ = (ee)e, P« P’ = (ee)((ee)e)). The tensor product
of morphisms PaB(O,, O)) x PaB(O,, O;) — PaB(O, ® O,, O} ® O)) is induced by
the juxtaposition of braids B|o,| X Bjo,] = Bjo,|+/0,| (the group morphism (o3, ¢) — o,
(¢, 09) > 0j1|0,)). The braiding Bo o € PaB(O ® O, O’ ® O) is the braid 0,,, € B,
where the 7 first strands are globally exchanged with the #’ last strands (see Figure 1); we
have 0, = (0, 01)(0yg1 -+ 09) -+ (Opyw—1 - - 0y) (Where n = |O[, ' = |O’|). Finally,
the associativity constraint ap 0,07 € PaB((O® O') ® O”, O ® (O’ ® O”)) corresponds
to the trivial braid ¢ € B|()‘+|0/|+|()H|.

Moreover, the pair (PaB, @) is universal for pairs (C, M) of a braided monoidal
category and an object, i.e., for each such a pair, there exists a unique tensor functor
PaB — C taking e to M.

Bar-Natan introduced another category PaCD of ‘parenthesized chord diagrams’.
It is constructed using the family of Lie algebras & defined in the Introduction. Note that
the permutation group Sg of S acts on té‘ by 0 -ty = ly(50(y)- Then the Lie algebra tls‘ 1s
graded, where £ has degree 1, and we denote by {g its degree completion. When S = [1],
we denote by tg, %ls‘ by t*, g‘, we have G5 =6,

The category PaCD can then be described as follows. Its set of objects is Par, and

L exp(%}f) X6, if|O|=|0|=n,
PaCD(O, O)) := {@ if |O] # |O'].

We define the tensor product as above at the level of objects, and by the juxtaposi-
tion map (exp %ln‘ X 6,) x (exp %:l‘ XS, —> expg‘ﬂ/ X S,y ((expax,s), (expy,s))
(exp(x * x'), s x 5'), where %}1‘ X El‘, — @n‘ﬂ,, (x,«') > x % «" is the Lie algebra morphism
such that #; * 0 = t; and 0 * tyy = t,47 445, and 6, X &y — &,1y, (5,5) > s* 5 is the
group morphism such that s; x 1 =s;, 1 %57 = 5,47.

Every ® € M, (k) gives rise to a structure of braided monoidal category PaCDg
on PaCD, as follows: oo = (et‘2/2)["]’”*'[”/]3,2,,2/, where n = |O|,n = |0, and s, €
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S,tw 18 given by s, (1) =n' + ¢ for 1 € [n], 5,,(n+ 1) =1 for 7 € [#'], and ap.0r.0r =
D (119, log) "L+ for p = |O|, #' = |O'], " = |O"|. By the universal property of
PaB, there is a unique tensor functor PaB — PaCDy, which is the identity at the level
of objects.

1.3. Morphisms B, — exp(¥*) x &,, PB, — exp(i¥). — Fix ® € M, (k). By the
universal property of PaB, there is a unique tensor functor Fg : PaB — PaCDy, induc-
ing the identity at the level of objects. So for any n > | and any O € Ob(PaB), |O| =,
we get a group morphism?

Fo(0) = jio : B, ~ PaB(0) — PaCD(0) = exp(t) x &,
such that

B, 23 exp(i) x &,
N v
S,

commutes. It follows that j1 restricts to a morphism
(7) fio : PB, — exp(t).

Let us show that the various fio are all conjugated to each other. Let canp o €
PaB(O, O') correspond to ¢ € B,. Then cany o ocanp o = canp,or. Moreover, if we
denote by 0 : B, — PaB(O) the canonical identification, then o/ () = cangp o 06(b) X
Can(_)}o,. Let us set @, := Fe(canp o). Then:

(1) ®o.0 € CXp(in% Py o Po,o0 =Po0;
(2) o (b) = q)o,O/ﬁo(b)q)(_)}o/-

If O = o(...(®9)) is the ‘right parenthesization’, the explicit formula for fio 1s

[LO(O'{) — CI)“JF]‘HZ"'"’e’i*”l/Zsi(CDl’lJrl'Z+2"'”)7l , | = 0’ een— 1.

1.4. Prounipotent completions. — Recall that a group scheme over Q is a functor
{Q:rings} — {groups}, G(—) = (k= G(k)). Such a group scheme is called prounipo-
tent if there exists a pronilpotent Q-Lie algebra g, such that G(k) =~ exp(g*), where
gk =lim. (g/D"(g)) ® k, and D'(g) = g, D""'(g) = [g, D"(g)]. To each finitely gener-
ated group I', one may attach a prounipotent group scheme I'(—), equipped with a mor-
phism I' — I'(Q), with the following universal property: any unipotent Q-group scheme
U(—) and any group morphism I' — U(Q) give rise to a morphism I'(—) — U(—) of

21t C is a category and X € ObC, we write C(X) := C(X, X) = End¢ (X).
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prounipotent group schemes, such that the composite map I' = I'(Q) — U(Q) coin-
cides with I' = U(Q). The scheme I'(—) is called the prounipotent (or Malcev) comple-
tion of I'.

If'S is a finite set, let Fs be the free group generated by S and %8 be the topologically
free Lie algebra generated by symbols logs, s € S. Then we have an injective morphism

Fs = exp(%?‘), st exp(logs). If I is presented as (S|f(¢), ¢ € T) for some map T i> Fs,
then Lie I'(—) may be presented as the quotient of fg’ by the topological ideal generated
by all logcanf(¢), t € T. In particular, we have a canonical identification Lie Fg(—) >~ fg

1.5. 1-formality isomorphisms for braid groups. — We show how the morphisms jio
(see (7)) extend to isomorphisms between prounipotent completions. The prounipotent
completion of B, relative to B, — &, will be denoted B, (k, &,); it may be constructed as
follows: B, acts by automorphisms of PB,, hence of PB,(k); B,(k, G,) is defined as the
quotient of the semidirect product PB,(k) x B, by the image of the morphism PB, —
PB,(k) X B,, g (g7, 2) (which is a normal subgroup). Then B, (k, &,) fits into an exact
sequence | — PB,(k) - B,(k,5,) > G, — 1.

The morphisms [t then give rise to isomorphisms

PB,(k) — exp(i®)
8 \: \
B,(k, S,) = exp() x G,

also denoted fto. When @ is the KZ associator with coupling constant 27¢ (see the Intro-
duction), these isomorphisms are given by Sullivan’s theory of minimal models applied
to the configuration space of n points in the complex plane. This theory computes all the
rational homotopy groups of a simply-connected Kahler manifold, but only the prounipo-
tent completion of its fundamental group in the non-simply-connected case, whence the
name ‘l-formality’ [Su].

2. Operadic properties of 1-formality isomorphisms of braid groups

In this section, we establish operadic properties of the morphisms [t introduced
in Section 1.3. The operadic structure of the collection of braid groups is described by
the cabling morphisms, which we review in the following section.

2.1. Cabling morphisms. — Let n> 1, m = (my,...,m,) € N" and m := |lm| =
my + -+ m,. For s € G,, define s, € G, by spm(my + -+ +m_y +j) =m0y + -+ +
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m-1si)—1y +J for any ¢ € [#] and any j € [m;]. Then the diagram

[m] = [m]
$m 4 Yo

(2] >  [x]

commutes, where ¢, : [m] — [n] is defined by ¢ (m) + - - - +m;_; +j) =i for any 7 € [#n]
and any j € [m;]. One checks:

Lemma 11. — For s, t € G, (t5)m = tmos—1Sm (where we view m as a map [n] — N).

Recall that for a,6 > 0, 0, = (0,---01) - (Opsp—1---0,) € Byyy, and that
(0, T) = o * T 1s the group morphism B, x B, — B4, such thato;%x 1 =0; fori € [a—1]
and 1 x 0, =0,y forj e [b—1].

Proposition 12. — There exists a unique collection of maps B, — B,,, 0 > O, such that:

a) (0)m = lottm s ¥ s ¥ Lo Jorany i € [n] (where 1, € &, is the ideniit
1+-t+mi—1 7o M4-1 z+2+ +my, _)) _))
permutation);
(b) forany o, T € B,, (T0)m = Tmos—! Om, Where s =1m(o € B, = G,).

For any m, the diagram

o> 0m

B, =" B,

(9) !
671 S'_i;m Gm

commutes, and the map o > O restricts to a group morphism PB, — PB,,.

Remark 13. — The morphisms f, : PB, — PB,, can be interpreted topologically
as follows. Recall the isomorphisms PB, ~ 7, (Cf,, P,) where Cf, = {f : [n] = C|f is
injective}, and P, = {f : [n] = R|f (1) < --- < f(n)} (this is well-defined as P, is con-
tractible). For & > 0, define Cf; C Cf, as Cf, = {f|Vi #, |[f (1) — f()| > ¢} and let
Zm : Cf, — Cf, be the map f + g, where g(m + -+ mi_y +j) = f() + Z&. Then
(P, NCE) CP,, and Cf C Cf, is a homotopy equivalence, so the diagram] of maps
Cf, D Cf — Cf,, induces a group morphism PB, — PB,,, which coincides with fm,. The

maps_fm : B, = B,, can be defined in a similar fashion (see Figure 2). OJ

Proof of Proposition 12. — This proposition could be proved topologically, following
Remark 13; however, we give an algebraic proof as it involves techniques which will be
used in Proposition 14.

Condition (b) imposes (1,)m = 1,,, therefore (a) and (b) imply (Gfl)m = Loy ootm; %

% Lyytoam- As 077 generate B,, this equality and conditions (a) and (b) deter-

M1, my
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Fic. 2. — Cabling morphisms

mine the value of oy, for each o € B,. This proves the uniqueness of the collection of
maps 0 > Om.

Let us now prove its existence. We first recall from [JS] the construction of the
free strict braided monoidal category F,(Ag) = Bs, where S is a set (the category Ay is
defined in Section 1.2).

Bg is small and its set of objects is Ob(Bs) = | |, SF: it identifies with the semi-
group (S) freely generated by S. For w € Ob(Bg), we denote by |w| the index £ such
that w € S* (£ is the length of w). Then for w, w’ € Ob(Bs), we set Bs(w, w') = ¢
if |lw| # |w'|, and Bg(w, w') = B, xX5,6,,» if |w| = |w'| = £; here G,y = {0 €
Silw oo™ =w'} (we view w, w’ as maps [k] — S).

The tensor product is defined at the level of objects using the semigroup law, so
w @ w' is defined by |[w @ w'| = |w| + |w'], (w @ w)(2) = w() for i € [J[w]], (W R
w)(|lw| 4+ 1) = w'(2) for 2 € [|w'|]. It is defined at the level of morphisms by restricting
the map By, X By = Bpysjw, (0,0") = o % o’. The braiding is By = Oy juw| €
Bs(w@uw',w Qw).

When S = {e}, By is simply denoted B; then Ob(B) =N, B(k, k) =0 if k£ K,
B(k) =By, k® K = k+ K, and the tensor product coincides with % at the level of mor-
phisms.

Letnow n > 1 and m € N". By the universal properties of By, there exists a unique
tensor functor Fy, : By,; — B, such that F,,(:) = m; for each i € [n]. For s € &, we set
B, := B, x¢,{s}. Then B, =| |_g B,. Define the map fm : B, — B,, by the condition
that for any s € G,, the diagram

B(l® - @ns'(H)® - ®s'(n) Iy Bim @ - ®@my,m-1)® -+ ® s-1,)
(10) | I

B % B,,
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commutes. We now prove that the maps f, satisty conditions (a) and (b). For 5,1 € G,,,

B (l®- --Qn, B (1® - -®n,
B x B _5_11®---®5_1n)w s @5 n) Vorgef  Bpy(l®---Qn, _BY
n n xBp(l®---®n, — XB[,L](J_II®~~-®J_1n, (ts)_ll®~~®(ts)_ln)_ n
M-y U5 )
Jin X1 ¥ VFmxF o 1 Fn L
B(m & ®my,
M1 ® -+ @ m1,,) (/9> gof B(m ® -+ ®@my,
B, x B, >~ xB(me—1, @ @my1,, — M1 @ -+ @ =B,
Mme—14=-1] Q- ® m.\'*]t*]n)

Mg—1;-1 n)

commutes, so the diagram

(0,7)—>T10

B xB' > B,

S X foor—1 Lem
(o, T)—>T10

Bﬂ'[ X Bﬂl Bm

commutes. So the family of maps (fm)m/=n satisfies condition (a). The value of f,(0;) is
obtained by a direct computation, which shows that (fm)m/=» satisfies condition (b).
Note that the tensor functor I, : B, — B factors as I, = p o G,,, where
Gm : B,y = By, isdefined by G,,(0) := ®j€ml+”'+mi—l+[”li]j foranyi € [n] andp: B, — B
is defined by p(j) = e for any j € [m]. It follows that we have a factorization of (10) as

_ _ Gm Bp)(Gm()® - ® Gm(n), V4
(11) I I

B, — B —- B,

which implies that f,(B)) C B™

m

then imply that f, restricts to a group morphism PB, — PB,,. 0J

as wanted. The commutativity of (9) and identity (b)

Identities (a) and (b) immediately imply that if m; = 1, then

fm(Xz) = Xm]+'--+ml;1+2 T Xm1+~--+m,’+l

fori=2,...,n, where X; € PB, is given by X, =0,_; - - -0201202 -0,
2.2. A commutative diagram. — Let O € Par,, and let O,,...,0, € Par. Let
O(Oy, ..., O,) € Par be obtained by replacing the object ® occurring n times in O suc-

cessively by Oy, ..., O,. (For example, for O = e(ee), O; = 00, Oy = e(ee), O3 = o,
O(01, Oy, O3) = (ee)((e(0e))e).)
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Proposition 14. — Fix ® € M, (k). The diagram
B, X exp®) x6,
Jm J/ y \l/gm

my+-tmy—1+

commutes, where g (€', 5) = (¢, sm) with y = xmbmtimal... Ul In particular, we have

a commutative diagram of group morphisms

PB” ﬂ)) CXP(%};)
(1 2> S ) Ve
PBm N—()(()L)...,()n) exp (’t‘:;)

Progf. — We first recall the construction of the free b.m.c. PaBg = F,(As) (see Sec-
tion 1.2). Its set of objects is Ob(PaBs) := Ob(Bs) xn Par = {(w, p)||w| = [p|}; it may
be viewed as the free magma generated by S (recall that a magma is a set equipped with
a binary law and a neutral element). The morphisms are then PaBs((w, p), (W', p')) :=
Bs(w, w’). The tensor product is defined at the level of objects by (w, p) ® (w', p') :=
(w®@w, p®p), and may be identified with the magma product. At the level of mor-
phisms, the tensor product law PaBg((wy, p1), (W, p2)) X PaBs((ws, p3), (W4, ps)) —
PaBgs((w, p)) ® (ws, p3), (W, po) & (wy, py)) 1s defined as the tensor product law
Bs(w, wy) x Bg(ws, wy) = Bg(w; @ ws, wy ® wy) of Bg. The braiding constraint for
PaBs is By, w. ) = Buw €Bs(w @ W', w' @ w) =PaBs((w, p) ® (W', p), (W, p) ®
(w, p)), and the associativity constraint is gy, w' »), " p") ‘= Idwgwew’ € Bs(w @ w' @
w") = PaBg((w, ) @ (W', ) ® (w”, ), (w, p) @ (W', p) & (W, ")),

For ® € M,(k), we then construct a b.m.c. PaCDCSD as follows. Its set of
objects is defined by Ob(PaCD¢) := Ob(PaBs). The morphisms are defined by
PaCD¢ (w, p), (W', 1)) := exp(t*) x &, . if |w| = |w'| = k, and PaCDS (w, w') = ¢
otherwise. There exists a unique b.m.c. structure on PaCDg, such that the tensor product
1s the same as that of PaBg at the level of objects, and the functor PaCD;I> — PaCDy,
defined at the level of objects by (w, p) = p and at the level of morphisms by the canoni-
cal inclusion PaCDg ((w, p), (w’, #')) C PaCDg(p, ), is a tensor functor.

We associate a tensor functor G, p PaCDEI;] — PaCDEI;Z] to the following data:

n

(1) amap m: [n] - N, such thatm=)_"_ m;
(2) a collection p = (p;)ic[n), Where for each i, p; € Par,,.

Gm,p s constructed as follows. At the level of objects, it induces the unique tensor map
Smp - Ob(PaCDE’;]) — Ob(PaCDq>]) taking 7 € [n] to ((my + -+ +mi_1 +1,...,m +

[m
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<o +my), pi) € [m]™ x Par,,. Note that the diagram

Sm,p

Ob(PaCD?) “¥ Ob(PaCD?,))

() = ()
commutes, where we recall that (S) is the semigroup generated by S and gy, is the semi-
group morphism defined by g, (1) = (my +---+mi_y + 1, ....m +--- +my).
Letw = (wy,...,wp), w = (w}, ..., w)) € [n]" and p, p € Pary; the map

PaCDF;]((w,p), (w', p)) — PaCDF;] (Gonp(W, D), Gmp (W', 1))

induced by G, p on morphisms is determined by the condition that

PaCD?,(w, ), (W', /) = PaCDY, (gmp (W, 1), gonp (W', 1))
[ [

k
~ Sm N
CXP(t}:) X 6w,w’ - eXP(t}:f) X Ggm(w)»gm(w/)

commutes, where £ = Y m(w;), and g (expx, 5) = (€XPs Suwy)....muwp)> Where y =
xlr @Dl m(u)ttmi-) +Hmwol - One checks that G, p s a tensor functor.

There are tensor functors PaB,; — PaCDEI;] and PaB,; — PaCDSn], uniquely
determined by the condition that they induce the identity at the level of objects. We also
have a tensor functor PaB,; — PaB,,), uniquely determined by the condition that it

induces the map g, , at the level of objects. Then the diagram of tensor functors

PaB [n] — PaB [m]

v v
PaCD} — PaCD},

commutes; to prove this, one checks that two tensor functors PaB,) — PaCDF:n] are
equal by considering the images of objects.
We also have a commutative diagram of tensor functors

PaB [m] —> PaB

¥ ¥
PaCD;, — PaCD,

where PaB,; — PaB is induced by the unique map [m] — {e}, PaCDfI:n] — PaCDy is
similarly defined on objects and by the natural inclusions of the sets of morphisms.
Composing these commutative diagrams, we obtain a commutative diagram

PaB,, — PaB

| ¥
PaCD?, - PaCD,,
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which induces a commutative diagram

PaB,(1® - ®ns ' (D® - ®s'(n)) - PaB(m)
+ -
PaCD; (1®---®@n s ' (1) ®---®s5 ' (n) - PaCDg(m)
for any s € G,. The latter induces the desired commutative diagram

OH>0m

B, B,
R A
exp(t}f) X6, — exp(tl;l) x 6, U

3. Braid groups and free groups

In this section, we recall the relations between the free and (pure) braid groups, as
well as between their infinitesimal analogues. We also recall material from [AT2] about
the non-commutative Jacobian and complexes of spaces of cyclic words.

3.1. Action of brawd groups on free Lie algebras. — For S a finite totally ordered set,
define the braid group Bs by Bg := Bjs;. The images of the Artin generators of Bjg| are
then o,, s € S non-maximal.

,,,,, i X&,, 64, where 6, — 6,11 =6, is 0 > 0, where 0 ex-
tends o by 6 (0) = 0. Then B, , is a braid group of type B. If we set T := a3, its presenta-
tion is as follows:

,,,,,

13 enerators: T, 07, ..., Op_1,
g
relations: (r0,)? = (0,7)%, 710; =07 fori> 2,
Artin relations between oy, ..., 0,_1.

Define elements of B, , as follows:

-1 . -1
X :=r, Xo:i=o1t0; , ..., X, :=(0,_1-0)T(0Op1---01) .

We have then:

o X0 =X, 0. X110, =X XX,
e oXo ' =X; ifjAii+1
fori=1,...,n—1,7=1,...,n One checks that B, , may be presented as follows:
(15) generators: Xi, ..., X,, 01, ...,0,_1,

relations: relations (14),  Artin relations between the o;.

More precisely, one shows directly that the presentations (13) and (15) are equivalent.



160 A. ALEKSEEV, B. ENRIQUEZ, C. TOROSSIAN

Proposition 15. — (1) There 15 a unique group morphism B, — Aut(F,), taking o; (1 =
1,...,n—1) to the automorphism X; — X;y1, X1 > X;rllXin-Jrl, Xi=> X forj #1,1+ 1.

(2) We have an isomorphism By, = ¥, x B,, where the semuidirect product is with respect to the
above action. Its mverse 1s (X, 1) — X, (1, 0;) = o;.

Progf: — (1) 1s well-known (see e.g. [Mag]). As mentioned in the Introduction, this
group morphism admits an interpretation in terms of the Fadell-Neuwirth fibration.

(2) follows from the fact that the presentation (15) is that of a semidirect product. U

Note that we have a commutative diagram

B,,— F,xB,
N
6”

Taking kernels, we obtain:

Corollary 16. — We have an isomorphism PB,.) > ¥, X PB,, where the semudirect product is
with respect to the restriction PB,, — Aut(F,) of the action of Proposition 15.

These statements have prounipotent counterparts:

Proposition 17. — (1) The morphism B,, — Aut(F,) in Proposition 15 extends to a morphism
B,(k, S,) — Aut(F,(k)).
(2) We have an isomorphism PB,, (k) ~ F,(k) < PB,(k).

Progf. — Immediate. O

Remark 18. — The results of this subsection can be reformulated ‘invariantly’ as
follows. If S is a finite totally ordered set, set ST := {0} LU'S, where 0 < s for any s € S.
We then set By s :=Bs+ x g, Ss, and X, := ([],_, 00 s([1,-,00) 7", where [T~ means
the product in decreasing order. Then we have injective group morphisms Fg < B, g,
st X, and Bs < B, s, which lead to an isomorphism B, g > Fg X Bg. It restricts to an
isomorphism PBg+ 2 Fg X PBs.

3.2. Lie algebraic analogues. — One checks that there is a unique Lie algebra mor-
phism ts — Der(fs), given by ¢y = (st= [5, 5], ' = [, s], t = 0 for ¢ # 5, 5'). It follows
from the presentations of ts and tg+ that we have an isomorphism

tS+ ~ fS X ts,

given by 4, = (s,0), ty = (0, ty).
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3.3. Tangential derwvations and tangential automorphisms. — If'S 1s a set, define Eautg :=
Ss x (Fs)®; it is equipped with the semigroup law (o, g)(t, 4) := (o' T, k), where & =
0(o, g)(h)g: () and 0 : Eauts — End(Fs) is given by 0(o, g)(s) = Ad, (o (s)). Then 0 is
a semigroup morphism. We have an isomorphism Ker6 =~ Z3, with inverse given by
(n),es H> (g;)ses, where g, = 5™ for any s € S. We set Eautg := Im 6 = Eautg /Z? and call
its elements extended tangential endomorphisms of the free group.

A section of Eauts — Eauty may be defined by (0, (g)es) —> (0, (¢)es), where
g = g~ degrec ofsin < We then have

Eauts = Z° x Eaut,

where the action of Eautg on Z° is via Eauty — Gs, (0, (g)ses) > 0.

Set Tautg := Ker(Eauts — Gg), Tauty := Ker(Eauty — Gg). Then Kerf C
Tautg 1s central, and the above section of 6 restricts to a morphism Tauty — Tautg,
therefore

Tauts = Z° @ Tautg.

The semigroup morphism Eauty — Gs, (0, ¢) + o admits a section o — (o0, 1). We
then have isomorphisms

Eautg = Tautg X 65, Eauts = Tauts X Gy

compatible with the above decompositions.

These semigroups admit prounipotent versions. We set Eauts(k) := G x Fs(k)®,
Eaut (k) := Im(Eauts(k) — Aut(Fs(k))); we recall that Fs(k) ~ exp(fls‘). A section of
Eautgs (k) — Eautg (k) is defined as above, with g := g,e (coctlicient of logs in logg)logs Then a5

above,

Eauts (k) = k° x Eaut, (k), Tauts (k) = k° @ Taut, (k),

Eauts(k) = Tauts(k) » S5,  Eaut,(k) = Taut, (k) x Gs.

Set tDet‘S‘ = Im(tbetls‘ — Der(fé‘)). Then the projection tDetIS‘ — tbeté‘ admits a
section (4;)ses F> (¢))ses, where &, = u; — (coeflicient of u; in s5)s. Then we have an iso-
morphism

toert = k° @ toers,

which is equivariant under Gg and is the Lie algebraic version of the above decomposi-
tions.



162 A. ALEKSEEV, B. ENRIQUEZ, C. TOROSSIAN

Proposition 19. — (1) There is a unique semigroup morphism By , A Eaut , given by o,
(si, &), where (g;)i+1 = X;rll, and (g); =1 fory # 1+ 1, and X; v (1, k), where (h;); = X;
Jorj=1,...,n. The composite map B, , — Eaut, — Aut(F,) is the adjoint action of B, ,, on its
normal subgroup F,.

(2) This morphism restricts to a morphism PB, ., — Taut ; the latter morphism extends
to a morphism PB, (k) — Taut (k). The composite maps PB,y, — Taut, — Aut(F,) and
PB,; (k) — Taut, (k) — Aut(F,(k)) are the adjoint actions of PB,1, on ¥, (resp., of PB,; (k)
on F,(Kk)).

The proof is straightforward.

As toert = Lie Tauts (k), toert = Lie Tautq(k), the Lie algebraic version of the se-
quence of morphisms Tauts (k) — Tauty (k) < Aut(Fs(k)) is t0 et}g‘ —» mg — Der(fé‘),
where mlg = Im(tbetls‘ — Der(f‘s‘)) = tbetls‘/ks.

Proposition 20. — There exists a unique morphism t,, — toex, , gwen by tj — (1>
—xj,] > =X, k> 0 for k # ¢,7) and to; = (5 > x;). The composite map t, — toer, — Der(f,)
coincides with the adjoint action of t,1\ on its ideal §,.

This follows from the Section 3.2.

3.4. Contravariant functors from the category S,q. — We define S,,4 as the category
where objects are totally ordered finite sets and morphisms are partially defined non-
decreasing maps.

The functor S — %ls{ is then a contravariant functor S,,; — {Lie algebras}, where

to the morphism T O Dy -5 S is assigned ¢* : f — 7%, s > cbh(t, £ € ¢~'(5)), and cbh
is the Campbell-Baker—Hausdorff product (according to the order in ¢! (s)).

Likewise, the functor S + Tautg(k) is a contravariant functor S,,; — {groups},
where to ¢ is assigned (i;* (g =(g)ses > g~ = h= (h)er, where h, = &*ng)); we use the
convention gy, = 1 for ¢ (¢) undefined. The corresponding contravariant functor S,,; —
{Lie algebras} is S 6e\tl§ (the hat denotes the degree completion); the maps iﬁe\tlsi —
tb/e\tl; are defined in the same way, with the convention uy ) = 0 if ¢ (¢) is undefined.

The contravariant functor structure of S > f& induces structures of contravariant

—

functors S,,; — {algebras} and S,,; — {vector spaces} on S — U(f¥) and S fAflS‘ (where
the hats again denote the degree completions).

—

We use the notation ¢~>*(g) = g% =gl1 for S = [n], where I, = ¢ 71 (v).

Remark 21. — The simplicial category A has the same objects as S,4, and its
morphisms are the (everywhere defined) non-decreasing maps. We thus have a functor
A — Sord-
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3.5. Properties of the non-commutative Jacobian map. —
Proposition 22. — The composite map exp(%};l) — Taut, (k) i> ‘%}1‘ is zero.

Proof. — This follows from the relations between J and j and the fact that (£¥, -

tbet}l‘ i) E}:) = 0, which follows from the cocycle identity for j and j(ad #;) = O for any
5,7, O

Proposition 23. — The composite map PB,;, (k) — Taut, (k) i> ‘%}1‘ is zero.

Proof. — The map J admits an extension to a cocycle Eaut, (k) EN fgffl‘, uniquely
defined by the condition that J(o) = 0 for 0 € Gs. One checks that J(Ado;) = 0 for
i=1,...,n—=1and J(AdX,) =0 for:=1, ..., n, which implies the statement. O

We now study the compatibility of j and J with the simplicial structure. Any par-

tially defined map [m] D D, 4 [7] gives rise to a Lie algebra morphism ¢* : §, = §,,
x> x?. These morphisms give rise to linear maps T — T*. Then one can show:

Proposition 24. — j(u®) = j(w)?, J(g%) =]J(9)® for u € tbet:f, g € Taut, (k).
J and are also compatible with the ordered simplicial structure. One can show:

Proposition 23. — For any non-decreasing partially defined map [m] O Dy — [n], we have
J(?) = jw?, (&) =J(@)? for u € Wexy, g € Taut, (k).

3.6. Complexes. — We define a complex ¥, BN <y BN %s... as follows: the map

5 )
T, — T ds

k=1

so the first maps are f(x1) = f(x; + x9) — f(x1) — f(x0) =12 — f1 — F2, F(x1, x%9) >
S X, x08) — [ (xpy x4 x3) — f (o, x8) 41 (1, 49) = 127 = f12 — f27 4 f12 etc.

Proposition 26 (See [AT2]). — Thuis complex is acyclic in degree 2 (the degree of %, is 1). The
kernel of %, 5 %y is I-dimensional, spanned by the class of x; € U(f¥) >~ %.

We similarly define a complex T, 5 T, LN Ty by requiring that %, 5 Ty s

n
i Z(_l)k+ljpl,...‘kk/+\1:.,n+l el (il
k=1
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so the first maps are f(x;) = f(log(e"¢?)) — f(x1) — f(x9) =f1~2 — =12 [, x0) >
S (og(e"e?), x3) — f(x1,log(e?e™)) — f(xg, x3) + [ (x1, x2).

Proposition 277. — This complex is acyclic in degree 2, and Ker(‘i’l 2 ‘%2) 15 1-dimensional,
spanned by the class of x, € U(f¥) >~ .

Proof. — The complex g S . hasa decreasing filtration by the degree, and its

associated graded is the complex T, S , which is acyclic by Proprosition 26; so the

complex g, S again acyclic in degree 2. The second statement follows from the
fact that log(e"'¢®) — x; — x9 1s a sum of brackets. O

4. Automorphisms of free groups

Fix ® € M, (k). In this section, we first show that for any O € Par,,, the isomor-
phism fio : PB4 (k) — exp(?;:;rl (see (8)) restricts to an isomorphism F,(k) — exp(ﬂ‘)
(in the case of the left parenthesization, this was proved in [HM]). We then set pp :=
[LO|F,x) © Can € Aut(ﬂ‘), where can : exp(ﬂ‘) — F,(k) is induced by ¢“ = X;, and we
show that po € Taut, (k) C Aut(exp(%l‘)). We then show how the ug are related for var-
ious O € Par. If O € Par, has letters successively indexed by O, ...,n — 1, and if 7 € [n],
we denote by O the element of Par, | obtained from O by replacing the letter @ with
index ¢ by (ee). Our main result (Theorem 30) is the identity

,0+1

o 1,2,..., n
Koo = Ug O Ueo(en)

where we view oo, Lo, He(es) as elements of Taut(k) for £ =n+ 1, n, 2, by virtue of
the inclusion Taut, (k) C Taut, (k) @ k* = Taut, (k).

4.1. Restriction of formality isomorphisms to free groups. — Let S := [n]. We identify
St ={0,...,n}. Then the inclusions of normal subgroups Fs C PBg+ and exp(f§) C
exp(ilsl) identify with F, C PB,y; and exp(f*) C exp(i};l). Recall that the genera-

tors of B,;; D PB,;, are oy,...,0,;, the generators of I, C PB,;, are X,..., X,
with X, = 002, e, X, = (0, - -01)002(0”,1 ---01)"!, the generators of t};q are t; with
1#7 €10, ..., n}, and the generators of f}z‘ are xi, ..., x, with x; = f,.

The generators of B, and of I, <PB,;,; C B, are depicted in Figure 3.

Proposition 28. — For any O € Par,, |, the morphism [Lo restricts to an isomor-
phism F,(k) — exp(f*). The composition of fiojr,a with the isomorphism exp(f*) EF,(k),
exp(x;) = X; belongs to Taut, (k) C Aut(exp(f}l‘)). We denote 1t Lo .
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X WL |

‘ I | ]| ‘ o
/ ‘ | |
X ‘ I L\j‘ |
L, v | = s o
2 I X M L ‘ p— ‘ j
T % |
Generators of B, Product in By, is from top to bottom Generators of F 34 PB4d By

FiG. 3. — Generators of B, and F3

Progf. — Let us first treat the case of O := e(...(ee)). As X;, =0,_1---0] X
00,1 ---01)~", we have io(X;) = Adjig o, opy@0 2.0 (€00).

Now we have fto(0;_1 -+ 01)®"12" = ¢is;_| - - - 5, for some y; € EZ‘H, so fto(X;) =
Ad,: (). As %};1 acts on ﬂ‘ by tangential automorphisms, we have Ad,:(¢") =
Ad, (¢") = Ad,: (¢) for some z; € % So [LO|F @& © can € Taut (k). The general case

follows from the identity fio = AdcbO o °ito and the fact that for any ¥ € exp(tn +1)
Ady € Taut (k).

Proposition 29. — If moreover O = o @ O fiom some O € Par,, then
om0 (X1 - X,) = 150,

Progf. — We have X1 X, =o0,---0>,---01. Now 0, |---0] = ,3.,(‘) €
PaB(e ® O,O ® o) while 0, --0,_ l—ﬂo.EPaB(()@o e ® 0). So,uo(Xl )=
1o (Bo,eBe0) = ﬁPaCD(D ,Bl)acm> = 0t = g1t g announced. ]

Whereas the isomorphisms [io are related by inner automorphisms, the various
isomorphisms flor,a) are related by the identities

(16> [Lo'u‘"(k) = Ad(q’o,o') o ﬁou‘"(k),

where the automorphisms Ad(®o o) of exp(g‘) are no longer necessarily inner.

4.2. Relation between o and poo. — Let O € Par,. We index letters in O by
0,...,n— 1, fix an index i # 0 and construct O” by doubling inside O the letter o
with index 1.

O gives rise to a morphism f[io : B,(k) — exp(fk) x &,, which induces @ €
Taut, ,(k) C Taut,—, (k). Similarly, too : B4 (k) — exp(tn 1) X 6,4 induces oo €
Taut, (k) C Taut, (k).

We now prove:
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Theorem 30.
<17> lu’O@ == MBQ""’ii+l """ ! o I’Lo’(..)

Progf: — We first show that there are uniquely determined elements g, ..., g, €
exp(ff_l) and g, h € exp(]d;) such that:

(a> MHo = e(gla s 9gn71)> loggi = _%(xl ++ xi*l) + O(xQ)a and3
(b> He(es) = 9(g7 h)) lOgg = O(XQ), 10gh = _%xl + O(XQ)

Let us prove the first statement (it actually contains the second statement as a par-
ticular case). The elements g; = g;(xy, ..., x,—1) are uniquely determined by the equality
Hwo =0(g,...,g-1), together with the condition that the coefficient of x; in the expan-
sion of logg; vanishes. We should then prove that logg, = —%(xl +oo oy +OMD).
We have

fio(o;) =¥ - =95 o7,
where ¢; € %}1‘ has valuation > 2 (we write this as ¢; € O(#%)), and
foX) = fo(e) ™+ fioloim) " o (6) o (01 - - - o (01).

Now

. N [ 2
fo(0i1) -+ floloy) = sy -+ » sy ez T HEEDHOW)

and fio(0f) = e“el-1ie%, Tt follows that
[10 (Xl) = Ade*%(»’(l +---+xi,1)+0(l2)ezi (eXi) )

where @; =51 51 - a4; - 52151 € O(t2)> s0 flo(X;) = Ad — Lo HO@) (¢), which
implies that g; has the announced form.
To prove (17), we need to prove the equality

<18> Moo = e(gl(xh ceey X +xi+l9 DRI xn)7 oo 1&‘(%1, ceey X +xi+lv DRI xﬂ,)g(xi? xi+l)’
JTCTPPE R o T8 P ) €T AR NP M| G T i TH P Xn))-
(12) implies that the diagram

Fn—l - Fn
HOIF,_ ‘l’ i’ﬂo(i) | Fp

exp(f& ) = exp(¥)

3 O(x*) means an element of f::_l of valuation > 2.
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commutes, where the upper morphism takes X; (j € [z — 1]) to: X; ifj < 7, X; Xy 1f) =1,
X1 if) > 1+ 1; and where the lower morphism is similarly defined (replacing products
by sums and X;’s by x;s). Specializing to the generators X; (j # ¢) of F,_, this gives

forj <7and

for j > 7+ 1, which implies that (18) holds when applied to the ¢%, j # 7,74 1.
We now prove that (18) also holds when applied to ¢ and ¢"+'.
The morphism X; € B, =PaB(O, O) can be decomposed as

(0i—9+00) ™! 0i—9°+:00

075" (0, ® (00) ® 0y 5 (0, ® (00)) ® O, 57 0.

Here the braid group elements indicate the morphisms. Let y € exp(%) x &, be the

(0j—9--00) !

image of the morphism O " = (O] ® (ee)) ® Oy under PaB — PaCDy; its image
in G, is the permutation sp--- 5,9, 1.e., (0,...,n— 1)+ (—1,0,1,...,0—2,72,7+

l,...,n—1). The image of (O, ® (ee)) ® O, i (O, ® (00)) ® Oy is ¢i-1i, therefore the
image of X, 1s

—1

po(Xy) =y ="y
We have y = ys0 - - - 5i_9, where Yy € exp(g‘). As so - Si—9 * tiy.; = x;, we have
o (X)) = yey,

As this image is also Ad, ..., )(¢%), we derive from this that gl-_lyo commutes with x;,
hence by Proposition 51 has the form g% !%- =Lt 1=l yyhere o € exp(%i‘_l).
Since po(o;) = sje?f?f“/Q, we get logyy = —é(xl + -+ x.,) + O(+*). Comparing
linear terms in x;, we get A = 0.
Let us now compute oo (X;). The morphism X; € B,;; = PaB(O?”, O?) can be
decomposed as

0200

(0, ® (o(99))) ® Oy ' (O, ® (s(00))) ® O, 5" OV

) (07—9+-00) !
%

ot

. (0j—9-+-0 -1
(here o*il involves the two first @ of (ee)). The morphism O® ( 2—>0) (01Q(e(00)))®

- (0j—9+0 -1 . .
O, is obtained from O® ( 20 (O) ® (e0)) ® Oy by the operation of doubling of
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sttt 1, 0,1,2,....i+1,...,n

the ith strand, so its image is "' =% (S0 -+ 8i—2). The image of

02
o(e0) —> o(e0) is Ad,, v (€"), so the image of

(0, ® (8(09))) ® 0y 5 (O, ® (s(s0))) ® O,

is Adyg iy (€719 It follows that

Indeed,

. i
Ad(g;lV())O’1'2""’”+l""’”g(xi»xi+l)(e )
= Ad(aoi,1.24...,i—l,i+l,...,n—1)0,1,2 ..... it Lo (x5, X 1) (exi)

= AdaOiiJrl.2.3,..4,#1,i+2,.,..ng(xl.’xl+1) ().

Now x; and x;; commute with any a” " so this is Ady, v, ) (€%).
So we get

The same argument shows that

7 . . —_ . Ni+1
MO(!) (XZ+1) = Adg?,],? ..... "+l""’"h(xi,x,'+1)(€ ),

as wanted. ]

5. Proof of Theorem 4 and Propositions 6 and 7

3.1. Proof of Theorem 4. — We first recall the formulation of Theorem 4:

Theorem 31, — Let ® € M, (k). Then ig := (D (x1, —x; — x9), € OFD2P (s, —x; —
x9)e?/?) € Taut, (k) satisfies O (119, ty3) © ,Uvé,m o /LlD’Q = Mg% o ,ui;g.

Proof. — We first prove that [leee) = Ho. X; € B; = PaB(e(ee)) corresponds
10 deee© (B, ®ids) 0 ay, . Then fhyee)(€") = flaee)(X1) = P (lo1, 112)e" P (lo1, o) ™"
Since ) + 49 + f9 1s central in t3 and since @ is group-like, this is ® (4, —ly —
lop) € @ (o1, —loy — lp2) ™" = P (xy, —x1 — x9) e P (xy, —xy — X9) ™' = pop(e).
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Similarly, Xy corresponds to (ide ®Bee) © de e © (,8.2’. ®id,) o a;iy. o (id, ®,3;l).
Then
Hoton) (€7) = [Laen)(X2)
=2 (12)D (ty1, 110) e P (to1, t2) ' (12)e™"12/7
= "D (lgg, 19) P (Lo, 1) "' e"¥?
= "I D (1, —ly) — lpo) € D (log, —lo1 — o)~ €TV
= ¢ PP (xy, —x) — 10)e? D (o, —x) — xp) LT

= o (e?).

So Heo(ee) = M-
Setnow O := e((ee)e), O’ := e(e(ee)). Then canp o =1id, ®d, ... € PaB(O, O'),
whose image in PaCD¢ (O, O') = exp(ty) X G4 is (49, ty3) = Po .. It follows that

CI).((.Q).),.(Q(..)) = q)(.tIQ, tQS) 193 1o |93 53
Theorem 30 implies that fle(ee)s) = g~ 0 g aNd e(e(es)) = g  © Mg and (16)
implies that fle(e(es)) = Ad D (419, l3) O [Le((ee)s)- All this implies Theorem 31. ]

5.2. Proof of Proposition 6. — We recall the formulation of Proposition 6. The
scheme SolKV is defined by

SolKV (k) := { w € Tauty (K) |0 (1) (¢ ) = ¢
and dr € Lﬂk[[u]],J(p,) = (r(x) + x0) — r(x)) — 7(x2)>}’

for any Q-ring k, and Proposition 6 says:
Proposition 32. — The map ® +— o s a morphism of Q-schemes M, — SolKV.

Proof. — Let ® € M (k). We first should prove that 6 (iug)(¢"e?) = "2, We will
give three proofs of this fact:
Furst proof. We have

0 (o) (e"x™) =0(no) (€O (o) (e?)

= ®(x;, —x — x9)e" D(—x; — xp, xp)e” T/

X @ (xg, —x) — %) D (—x) — xg, x) ) T2

=®(x;, —x — XQ)KWQCD(XQ, x1)€x2/2¢(—x1 — X9, 961)6(‘XIJ”62)/2

=M +xo ,

where the second equality follows from the duality identity and the third and fourth
equalities both follow from the hexagon identity.
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Second proof. Let us set v := pg'. Since [o satisfies (3), we have
(19> U2’3 o U1’23 = 1)1'2 o 1)12’3 o Ad(cb(l‘lg, tgg)).

Let us set C(xy, %) := 0(v)(x; + x2), and apply (19) to x + x + x3 to obtain
C(xy, C(x9, x3)) = C(C(x, x9), x3). According to [AT2], this implies C(x, x0) =
s~ log(e™¢™) for some s € k*. Checking degree 1 and 2 terms in v, we get s = 1.
Third proof- Set O := e(ee), then o = We. Proposition 29 implies that
flo (X Xg) = 172, Then 0 (j10) (¢ €?) = fLojrya © can(e'e?) = jLo(X 1 Xg) = €172,
We now prove that J(tte) has the desired form. It follows from Proposition 22 that
JAd @ (419, tp3)) = 0.

Proposition 24 implies that J(115"") =] (11e)'>?, etc., and we get by applying J to (3),

D (19, bys) - J(a)'?7 + P (hig, tys) © Mipm J(e)?
=J(e) " + g™ - J (1)’

Applying the inverse of (3), we get

(ms) ™ o (e ™)™ J(a)®* + (ugH ™" - J(pa)
= (s o (g™ J(e) P + (ugH ™ (o)™,

and since a'*® - 1123 = (a- £)'%3, etc.,

(g™ (g - J(ae)) ™ + (ng' - J (o))"
= () (gt J(e)) P 4 (g - J(ma))**.

Now 0(1e)~" (¥ 4 x2) = log(e" ¢?) implies that (u5?)~" - #12% = ¢ and (u2%) !
h2 = tﬁ%, o) S(,u;l -J(e)) = 0. According to Proposition 27, there exists r € ‘31 with
valuation > 2 such that ,u;l J(pne) = S(r). Now pe -2 =72 and we - ' =7, e - 1> =
r* as e (x;) is conjugated to x; for i = 1,2 in exp(%‘). Therefore e - 5(7) =46(r). So

J(e) =38(1) = (r(xi +x9) — r(x1) — r(xp)), where r € w’k[[u]]. [

5.3. Proof of Proposition 7. — For ® € M, (k), recall [DT, E] that there exists a
unique formal series [ (1) € 1 + «’k[[«]], such that

. Fo(x+9)
1 0,P (x, ab _ __ 7~ 7
280 = [ S Fat)

Proposition 7 then says:

Proposition 33. — J(e) = (loglgp (x4 9) —log e (x) —log e (1)).
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Proof: — Yor A(x, ) € exp(]ag‘) such that log A(x, ») has vanishing linear term in ,
let U:= (1, A(x,»)) € Taut, (k). Let

log A(x, ) = Zak(adx)k()}) + O()’Q)
k=1

be the expansion of log A(x, ); here and later O()*) means a series of elements with
y-degree > 2. Then

logU = (0, Zak(adx)k(y) + O())Q)> € t/a\etl;a

k=1

and J(U) =j(u) + O(»*). Now j(logU) = <Zk31 oz;gy(—x)k + O(?)). So

JU) = <Zak(—x>’“y+ O(y?>>.

k=1

On the other hand, the hexagon identity implies that e = Inn(® (x, —x — »)e™/?) o fLo,
where e = (1, @(x,9) ") and Inn(a) = (ae~**, ac=*’) for a € exp(]a?‘) with loga = a,x +
ayy + (terms of degree > 2), and we then have J(fto) =J(1o).

If we setlogTo(w) =) _o(—1)"¢o(n)u" /n, then we have

log®(x.)) = — Y _ ok + D(ad) () + O0H),
k=1
therefore
J(o) =J (o) = <Z(— 1)¢o(k+ 1)ij’> + 00”).

k>1

As we have J(we) = (f (x) +/(») —f(x+)) for some series f(x), we get

So(k+1)
k+1

(20) J(ne) = <(—1)’C ((x )T — i+ _yk+l)>

= (log'p(x) +1log ' (y) — log e (x 4+ 7).

This proves Proposition 7. O

6. Group and torsor aspects

This section is devoted to the proof of Proposition 8, Theorem 9 and Proposi-
tion 10, which describe the torsor structure of SolKV (k) and show that the map ® = e
is a morphism of torsors.
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6.1. Group structures of KV (k) and KRV (k). — Recall that
KV (k) := {or € Taut, (k)| () (') = ¢'¢
and 3o € w’k[[u]],]J(«) = (o (log(c'¢)) — o (x) —a ()},
and
KRV (k) := {a € Tauty(k)|6(a)(¢) = ¢
and  3s € Kk[[u]].J(a) = (s(x+) — s(x) — s0))}.

By Proposition 26, o and s as above are unique, and we set s := Duf(), s :=
Duf(a). The first part of Proposition 8 states:

Proposition 34. — KV (k) and KRV (k) are subgroups of Tauty (k), and Duf : KV (k) —
w’k[[u]], Duf: KRV (k) — «’k[[u]] are group morphisms.

Proof. — The statements on KRV (k) are proved in [AT2].

Let us prove that KV (k) is a group. For o € KV(k), let 0, := Duf(@), so o, €
wk[[u]], and J(a) = S(O’a). If o, @’ € KV(k), we have 0(a' o a)(¢'¢) = ¢°¢’. Moreover,
a'(¢"), &' (¢) are conjugate to ¢*, ¢, and &'(¢'¢") = ¢'¢’, which implies

(21) VieX, o800 =5@).

Then J(o' o @) =J(@') + &' - J(@) = () + &' - 5(0,) = 8(0, + 04), where the last
equality follows from (21). It follows that o’ o &« € KV (k), and that 040 = 04 + 0. One
proves similarly that o' € KV (k). O

6.2. The torsor structure of SOIKV (k). — The second part of Proposition 8 states:

Proposition 35. — SolKV (k) s a torsor under the commuting left action of KV (k) and right
action of KRV (k), and Duf': SolKV (k) — u’k([[u]] is a morphism of torsors.

Proof: — It 1s proved in [AT2] that KRV (k) acts freely and transitively on
SolKV (k).

Let us prove that KV (k) acts on SolKV (k). For i € SolKV(k), @ € KV (k), we
have 0 (o a)(e¢’) = 0 () (e'¢) = V.

Since 6 (1) (€"), 6 (1) () are conjugate to ¢, ¢, and since 6 () (¢'¢’) = ¢, we have

Vie%, 8()=mwp- ().

Let now 7, 1= Duf(u), so J(u) = 8(r,). Then J(p o o) = J(u) + p - J(a) =
8(ry) + 1 - 6(0y) = 8(r, + 0,), where the last equality uses the above identity. So
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noa € SolKV(k), and 7., =1, + 0y. It follows that KV (k) acts on SolKV(k), and
that the map Duf: SolKV (k) — #’k[[«]] is compatible with Duf: KV (k) — «*k[[«]].

Let us now prove that the action of KV (k) on SolKV (k) is free and transitive. For
w, ' € SolKV (k), set o := ™! o /5 then O(a)(e'¢’) = O() "' (¢7) = ¢*¢, and J(a) =
Jw ™D +p™ - Jw) =p™ - ) =Jw) as J(u™) = =" - J(w). Then J(a) = p~" -
Oy —r)) = S(r,, —1,), where the last equality uses u™"' - §(¢) = S(t) for t € %y. So
o € KV(k).

6.3. Compatibilities of morphisms with group structures and actions (proof of Theorem 9). —
We now show that: (a) f/ otfl is a group morphism GT, (k) - KV(k), (b) g — ({;1 is
a group morphism GRT, (k) — KRV (k), (c) the map ® > ¢ is compatible with the
actions of these groups.

For this, we will show that

(22) Mrsd = Lo O O, Moxg = 030 U

Since these are identities in Taut, (k) C Aut(%‘), it suffices to check them on the gen-

erators x, y of ]?'2‘ We give the proofs in the case of x, the proofs in the case of y being
similar.
The proofs go as follows:

O (Urva) (¥) = Ad(ra)(x,—r—y) (X)
= Ad/(@ (v @1 e )b (1,5 (X)
= Adf g @).po e (Ko (X))
= Ad (7, () = 0 (Lo 0 ap) (x)

and

O (L asg) (%) = Ad(@ug) (x,—x—) (X)

= Ado (gx,—v—p)rgle—1—9) 1, —x—)gle,—r—) (¥)

= Ad(b(ag(x),ag(—x—y)) (ag(x))
= a,(®(x, —x — )xP(x, —x — ) ") = 0(a, 0 jro) (x).
The first part of (22) implies the following: (a) if / € GT(k), then ay € KV(k);
(b) oy = @y, 0 ay; (c) M (k) — SolKV (k) is compatible with the group morphism
S o g
Indeed, using the nonemptiness of M, (k) (see [Dr]) we get oy = Uy © Mr+a, which
implies oy € KV (k) according to Section 6.2, i.e., (a). Again using the nonemptiness of

M, (k), we get oty = iy O Liismed = (g O Upea) O (M]gicp O Ufix(hsd)) = O 00y (Where
we used (f] * f5) * © =f; x (f x* @)), which proves (b). (c) is then tautological.
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Similarly, the second part of (22) implies: (a) if ¢ € GRT(k), then a4, € KRV (k);
(b) a4g = ay, © a,; (c) M (k) — SolKV(k) is compatible with the group morphism
g ag_l. All this proves Theorem 9.

It is easy to prove the identities ., = @, © Of;, Qg 4y = a4, © 4y, directly (i.e., not
using the nonemptiness of M, (k)). Indeed, these are identities in Taut, (k) C Aut(%‘),

which can be checked on x, y. The verification in the case of x goes as follows:

0 (i) (%) = Ad ) et e07) (%)
= Adj (et e e e e e e (1)
= Adﬁ (o (¢9),00p, (e77e7)) (Olfz (%))

= Ad% (i, (1) = 0oy, 0 0t) (%),

and

0 (agl *gz) (X) - Ad(g1 *g9) (X, —x—Y) (X)
= Ad,

91 (82 (%, —x—p)xg2 (v, —x—) ", —x—p) g2 (x, —x—) (x)

= Ad,, (agy (%), a5y (—x—)) (ag, (x))

= a,, (g1 (x, —x — p)xg (x, —x —y)_l) = 0(ay, 0 a,)(x).

Remark 36. — The Lie algebra morphism corresponding to g+ a; ' is the mor-
phism v : grt; — rv from [AT2], given by ¥ (x, 9) = (Y (x, —x — ), ¥ (y, —x — »)).

6.4. Torsor properties of the Duflo formal series (proof of Proposition 10). — We have al-

D> pg

ready proved that M, (k) * % SolKV (k) and SolKV(k) = #’k[[«]] are morphisms of

—logTe

torsors. On the other hand, it follows from [E] that M, (k) ¢ — {r e K[[u]]]r, (w) =
—;—i + -+ -} is a morphism of torsors and from Proposition 7 that the diagram of Propo-
sition 10 commutes. Proposition 10 follows.

For later use, let us make the group morphism GT;(k) — #’k[[#*]] underlying
® > logI'y explicit.

Lemma 37. — For f € GT,(k), there is a unique I'y € exp(’k([[«?])) such that

CA(—x)r(—y

[logf(e", )] =1— w;
Ty (=x—7)

in the Lh.s., we use the isomorphism ]2’2 / A’Q’ ~ wk[[, ¥]] given by (class of (ad x)*(ady)'([x,y])) <

7““}“1. The map GT, (k) — ’k[[«*]], f +> log Iy is a group morphism and Ty = ' T for

any f € GT,(k), ® € M, (k).
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Proof. — The map f, — k[x, 7], ¥ — (93,1 (x, )" also induces an isomorphism
f’z/A;’ ~ wk[[¥, 7]], which takes the class (ad x)*(ady)'([x, y]) to (—1)*H1F 15+ So for
}//(x,)i) EA fy, we have (ya},l/f(x,y))ab(;_c,j}) = —[¥](—x, —y) (where ¥ — [¢] is the map
fo = fo/fs = DkI[x, 31]).

So (4) may be rewritten
| Te(-F—))

Lo (=)o (=7)

If now ¥, @ € ), we have 9 (¢~*x¢, y) € f, and [ (¢~*x¢%, )] = (1 — [a(x,)]) X

[¥(x,»)]. Indeed, when ¥ (x,») = (adx)*(ady)'([x,»]), one checks that the part of

Y (e7*xe”, ) containing @ more than twice lies in fj, and the part containing it once
has the same class as (ad x)*(ady)'([[—a, x],7]).
If now f € GT,(k), we have (f * ®)(x, ) = O (x, )/ (P (x,9) e D(x,9), ¢), so

[og(f * ®)(x, )] = [log ®(x,»)] + [logf (P (x, )¢ D (x, ), ¢)]
= [log ®(x,»)] + [log/f(¢", ¢)]
— [log @ (x, ) [logf(¢", €],

[log ®](x,7) =1

SO

(23) 1 —[log(f * @) (x,»)] = (1 — [log @ (x, »)D(1 — [logf (", €)]).
If we fix ®5 € M, (k) and set I'r(u) :=I'ys0,(1)/ I'p, (1), then we get

Lr(=x) I (=y

| = llog/f (e, 3] = AL
Lr(=%=J)

as wanted. Moreover, (23) implies that I'y,.o = I';I"s, which also implies that / + I's is a

group morphism. UJ

7. Analytic aspects

In this section, the base field k is R or C. The main result of this section is the
proof of Theorem 5, which says that a solution of the original KV conjecture may be
constructed using the Knizhnik—Zamolodchikov associator.

7.1. Analytic germs. — We set R {{x}} := {f € Ry[[x]]|f has positive radius of
convergence} and Ry {{x}}o := {f € Ry {x}}|/(0) =0}. If /, g € Ry [[r]], we write [ < g
iff g — f € Ry[[r]]. We define f < g similarly when f, g € R [[r, ..., 7]].

Let V, E be finite dimensional vector spaces and let | - |y, | - |z be norms on V, E.
The space of E-valued formal series on V is E[[VI1 ={f =) _ /i./u € S"(V*) @ E};
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we define E[[V]], C E[[V]] by the condition f; = 0. For /, € S"(V*) ® E, viewed as an
homogeneous polynomial V — E, we set |f,| := supv¢0(]ﬁl(v)|E/|v|(,). An analytic germ
on V valued in E (at the neighborhood of 0) is a series / € E[[V]], such that |[f|(7) :=
Dol € Ri{r}}. We denote by E{{V}} C E[[V]] the subspace of analytic germs, and
set E{{ VI}o := E[[VIlo NE{V}}.

IffeEf{V}} and e =) _, " € Ry[[7]]o, we say that « is a dominating series
for f if |f,| < a, for any n; we write this as |/ (V)| < a(Jv]y).

If Vi, ..., V; are finite dimensional vector spaces with norms |- |y, ..., |- |v,, then
we equip V; @ - - - @V, with the norm [(vy, ..., vy)| :=sup, |v;]y,. If / is an analytic germ
onV; @@V, valued in E, we decompose f = D" _nifa, Where fo: V) x - XV, — E
is the n-multthomogeneous component of /. We then set

ol 7= SUPGy et cvimon VoG - X0/ Bl -l

Then f is an analytic germ iff |[f|(r,....7n) = > _lal' --n' € Rylln, ..., 5]l
converges in a polydisc. If @ = Zm,...,nkzo Ll o € Ry[[ry, ..o, ii]], we write
[f(vl,...,vk)|E < (X(|U1|\/1,...,|Uk|yk) if for each n, [ﬁ,(vl,...,vk)h; <
n((Vilvys ooy [urlvy)-

Let now g be a finite dimensional Lie algebra; let | - | be a norm on g; let M > 0
be such that the identity |[x, ]| < M|x|[y| holds.

The specialization to g of the Campbell-Baker-Hausdorfl series is a series x * y =

cbh(x, ) € gllg x gllo.

Lemma 38. — (1) The CBH series is an analytic germ g X g — @; we have |x * y| <

~f (M(|x| + 1)), where f (u) = [ —@dv.
(2) gxg—4g, (ny) = gadx(y) s an andlyﬁﬁggrm’ and |€adx0))| < 5M|x‘]y|.

Progf: — (1) 1s proved as in [Bk|, not making use of the final estimate i <L
(2) follows immediately from |(ad x)"(y)| < M"[x|"|y|.

7.2. Taut!"(g) and toer!"(g). — We set Taut,(g) :={(a1, ..., a,)|a € gllg"]lo} and
define on this set a product by (ay, ..., a,) (b, ..., b,) := (¢, ..., ¢,), where

(X1, i, %) 1= bz‘(eada'(xl""’m (x1), ..., A x”)(xn)) * (X, ..., %)

This equips Taut,(g) with a group structure. We set Taut)'(g) := {(a1,...,a,)|a €

gflg"o}-

Proposition 39. — Taut"(g) is a subgroup of Taut,(g).

Proof. — Let (ay,...,a,) and (by,...,b,) belong to Taut]"(g). Let a(r), B(r) €
R {r}}o be germs such that the identities |a;(x1, ..., x,)| < a(sup; [x;]), [b;i(x1, ..., x,)| =<
B (sup; |x;]) hold. Then
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GGty )| S A, o )[4 164 (), - @9 (1))
< (@ (sup, [xil) + B P sup 1) = y (sup, [x)),

where fy(w) = \i}f (Mu) and y (r) = fu(a(r) + M*PB(r)) has nonzero radius of con-
vergence. Here we use the compatibility of norms with composition: namely, if / €
E[[V, x -+ x V,]]y and g € V,[[W]ly, with |f(vi,...,v)| < a(vi],...,|v,]) and
g (w)] < Bi(wl), then h:=f € (g1, ..., g,) € E[[WIlg and [h(w)| < a0 (By, ..., B (w]).
We also use the non-decreasing properties of elements of R [[r,..., 7]l (e, if F €
R [[ur, ..., ullo and w;, u; € Ry[[r, ..., n]lo with &; < &, then F(uy, ...) < F(,...). So
(ar,...,a,)(by, ..., b,) € Taut!"(g).

If now (ay, ..., a,) € Taut"(g), then its inverse (b, ..., b,) in Taut,(g) is uniquely
determined by the identities

bi(xy, s ) = —a (@ (), L @O (),

Let us show that each b;(x, ..., x,) i1s an analytic germ. For this, we define inductively
the sequence 4 = (bgk), - bff)) by 6 = (0, ...,0), and

k41 A (a1 Ao (us.., .
D () = —a (@O ()L ) (),

One checks that 6® = p*~D 4 O(x"), so the sequence (b*);=( converges in the formal
series topology; the limit 4 is then the inverse of ¢ = (ay, ..., @,).

Let us now set B, := sup, |bl(-k)| (i w;(r) =0 ui o € R [[r]] is a finite family, we
set (sup; u;)(r) ==Y, (sup; u; 1)7"). We then have -

k) .
B ) | < @ Gup e () ]) < @ (@O sup, ),

50 Bri1(r) < o (P Or).
We now define a sequence (¥;);>¢ of elements of R [[r]]o by yo =0,

Vi1 () = a (&7 Or).

As the exponential function, mutiplication by r and o are non-decreasing, we have
Bi < ¥ On the other hand, we have y(r) = y;_,(r) + O(*), so the sequence (¥;); con-
verges in R [[7]]y (one also checks that this sequence is non-decreasing). Its limit y then
satisfies

(24) y (@) =a(™My).

It is easy to show that (24) determines y (r) € R[[r]]y uniquely. On the other hand, the
function (y,7) > ¥ — a(Mr) =: F(y, r) is analytic at the neighborhood of (0, 0), with
differential at this point 9, F(0, 0)dy + 9,(0, 0)dr = dy — Ma'(0)dr. We may then ap-
ply the implicit function theorem and use the fact that the dy-component of 4F(0, 0)
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is nonzero to derive the existence of an analytic function y,,(r) satisfying (24). By the

uniqueness of solutions of (24), we get that the expansion of y,, is ¥, so y € R {{r}}o.
Now 16 (x1, ..., x)| = Bi(sup; [xi]) < ve(sup; [x]) < ¥ (sup; [x:]), so by taking the

limit £ — 00, [b;(x1, ..., x)| < ¥ (sup; |x;]), which implies that 4; € g{{g"}}o, as wanted. [J

According to [AT2], we have a bijection
gL —0(9)0(9) ",

where £ is the derivation given by x; — x;.

Set  toev,(g) = {(w,...,w)|u(xr,...,x) € gllg"llo}, and toer]'(g) :=
{(ur, ..., w)lu € gi{g"o} C toer,(g). We have maps Taut (k) — Taut,(g), M}; —
toer,(g) induced by the specialization of formal series.

k : Taut (k) — toet®

_—n?

Lemma 40. — (1) There exists a map k4 : Taut,(g) — toer,(g), such that the diagram

Taut, (k) > etk
\ \
Taut"(g) _B> taetﬂ(g)

commules.

(2) Thus map restricts lo a map k" : "Taut"(g) — toer;"(g).

Proof: — (1) If a;, b; € f}l‘ are such that g = (¢, ..., "), g7! = (¢, ..., ¢™), then
k(@) =u=(uy,...,u,), with

1 — eada,;
. ad by (x1, ..., ,, ad by (x1,....%,
ui(xb---,xn):( (@))(61 ) (), L @O ()

ad g;
and ¢, = £(q;) = %|z:1ai(tx1’ ..., x,). So we define k4 by the same formula, where ; is
now defined as % b, ) (or Do ka*, where d! is the degree n part of @,).
(2) If the functions g, b; are analytic germs, then so is @ and therefore also
each u;. O

Recall also from [AT?2] that if u € Tauty(k), p(x*y) = x4 p and J(n) = (r(x) +
r(») — r(x +)) (i.e., u € SolKV(k)), then u:= —« (") = (A(x, ), B(x, »)) satisfies:

(KVIL) x+y—p*xx=(1— e_ad")(A(x,y)) + (Y — ) (B(x,)),

(KV3) j(w) = (¢ (x) + ¢ (») — ¢ (x %)), where ¢ (t) = tr'(¢).

Let @k be the KZ associator, @k (a, b) := Oy (a/(2m1), b/ (2m1)) € M;(CG) and

UKz = WL, Let ugz == K(Mfglz)- Then J(ukz) = (rxz(x) + rxz () — rxz(x * »)), where
kz () = — anz (2m1) "¢ (n)u" /n, therefore

Juxz) = (Pxz(x) + Pz (V) — Prz(x *)),
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where ¢gz (1) = — anQ (21)7"¢ (m)u". Now the real part of this function (obtained by
taking the real part of the coefficients of ") is

u

R _1 | u
¢Kz(u)—§(€u_ I — +§)

Let us now set ur := (Ar(x, ), Br(x, 7)), where the real part is taken with respect
to the natural real structure on f§. Then by the linearity of (KV1), (KV3), we have:

(KV1) x4y —psx=(1 = ) (Ar(x,) + (&Y — 1) (Br(x,))

_ 1/ « y Xk Yy
KV3 = — — —1).
( ) ) 2<e"— 1 * e—1 ev—1 >

7.3. Analytic aspects to the KV conjecture (proof of Theorem 5). — Recall that log @k, € %?
We denote the specialization of this series to the Lie algebra g as (log CIDKZ)Q € gllg*1o.

Proposition 41. — (log &)Kz)g i an analytic germ, t.e., (log &DKZ)B € gl{g*Yo.

Progof. — Recall that Ay = U(fg) is the free associative algebra in a, . For x € Ay,

set

¥, 1= SUPN= 1 SUP,.y iy ety @l i<t 16015 ).
Here | - || is an algebra norm on My(C). Then [x]y, is < ZIEURO{O’I}U |x1], where x =
domea,and for I=(,...,%), a=¢ ¢, e =a, e, = b. It follows from the Amitsur—

Levitsky theorem [AL] that (|x|s, = 0) = (x = 0); indeed, by this theorem, x(m;, my) =0
for my, my € Mx(CG) implies: (a) that x is in the 2-sided ideal generated by ab — ba if N = 1;
(b) that x = 0 if N > 1. It follows that |.|5, is an algebra norm® on A,, in particular
vl ay < 1x]as [P]a,-

We then define a vector space norm |[.[5, on fg by |xl5, := |x|a,; we have [[x, y]5, <
2 |x|f2 Mf?'

Forn= (n,...,n;) € N, and f a formal series on (fy)* (resp., RY), we denote by
SE1, .. E)n (resp., f (4, ..., t)a) the n-multihomogeneous part of /, which we view as

a multihomogeneous polynomial on (f$)* (resp., RY).
Lemma 42. — For any n, we have the identity

|10g("ZEI T €S[l)n|f2 = ((log(2 - ell+m+td)7l)n)t1:|§1|f2 ----- =184l *

* We will not use (Ixlay, = 0) = (x = 0), so our proof of Proposition 41 is independent of the Amitsur—Levitsky
theorem.



180 A. ALEKSEEV, B. ENRIQUEZ, C. TOROSSIAN
Proof of lemma. — We have for any n, |£]" - &, | s, < |&1[5) -+ [&alf) s0
(& -+ — Dalay < (@ = D)y, ity

_ (_1)A+l
Then log(‘eSI e efd)n - Zkzl k Z(nl ,,,,, nk)|n1+~~'+nk=n(651 e eEd - 1)111 e (efl e
¢ — 1)p, SO

1
|10g(6$1 "'esd)n|A2 < (Z % Z (€[1+-4~+fd _ 1)nl

k>1 nj+---+4n;=n

X (el]Jr"'Jrld _ l)nd>
1=[81lfgs-mrta=15alty

1
= (Z (e 1)%)

=1 =181l ta=l84ls,
_ ety —1
- ((10g(2 - ‘) )n)51:|§1|f2,-<-»[d:‘5d|f2' O

Let a(¢) be a function [0, 1] — %g of the form a(¢) = Zkzl a;(t), where a;(t) € fg [£]
(here £ 1s the total degree in a, b)) and fol la,(8)]5,dt < 00. Let uy, u; be solutions of u'(¢) =
a(tyu(t) with ug(0) = uy (1) = 1, and U := u; ' up.

Lemma 43. — Forn > 1, let (logU),, the degree n (in a, b) part of log U. Then

D 1(0g U, |1,r" < log(2 — ezt i 0l =,

n>1

Proof of lemma. — Let Lie(n) be the multilinear part of f€ in the generators xy, . . ., x,.
We denote by w, (x|, ..., x,) € Lie(n) the multilinear part of log(¢e" - - - ¢*

Let now a, be the coefficient of ¢, - - - , in the expansion of log(2 — ¢ T ) ~! (this is
also the nth derivative at ¢t = 0 of log(2 — ¢') 1. Specializing Lemma 42 form = (1, ..., 1),
we get the identity

lwa(&1, ..., 8Dy, S aaléuly, -+ - 1&ly,
forél,...,énefg.
Now log U expands as

logU:Z/OZ [ 1w,,(a(zfl),...,a(tn))dtyudtn
<l <...<t<

n>0

(see e.g. [EG]). It follows that

logUy=Y_" > / W, (g, (1), -« s @i, ()t -~ - i,
O<i) <...<tp<l

00 ky k] 3 ki=k
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and therefore

GogUll, =Y e, Y / ag ()],
0

>0 ki £, |Z ki=k <l <...<ly<l

.....

X |ak7,(tn)|f2dt1 e dtrr

\{lk([)|f2a'l)—l

Now the generating series for the r.h.s. is log(2 — ¢2=! o , proving the result. []

According to [Dr], Section 2, if we set

(ad b)*(ad a)'(b),

_ I (—log(l — ) (—logt)’
)= ) K2y I—1

k=0,1>1

then Pz = U. We have |(ad ) (ad @)'(D)y, < k+ 142 = 2%, 50

_ T !
()] < Z 1 (—=log(l = 1))*( logt).

k1) 1 —
k20,2 1 b4 1=n k! ;
Then we have the inequality of formal series in 7

AL (—log(1 — 1)*(—log?)’
/ |2, (D5, dt = / Z kTN 1 —¢ dt

n>1 k>0,/>1

r 7 T
= —/ (1=0"1"7@ 7 = Dt
T Jo

Now the identity [ #4(1 — £)’dt = Z&DIED alid for R(a), R(b) > — 1, implies that if
Y Jo C(atb42) p
N(r) <0, then

1 2
r err I Td=2n
;'/0 (1=29 (t 1)0,’1,‘—2(1 7[‘(1—47))'

This implies that the radius of convergence of = fol(l — )77 ("7 — Ddtis 1/4, so this
series belongs to R, {{r}}o. Plugging this in Lemma 43, we get
ra-=2n- 2?)

> [(log Bz, lp,r" < log(2 — e~ =) 7,

n>0

where the series in the r.h.s. lies in Ry {{r}}, (being a composition of two series in R {{r}}o).

Let us now prove that (log L= a{{g*}}o is an analytic germ. By Ado’s theorem,
there exists a injective morphism p : g — Mx(k), where k = R or G, hence an injective
morphism p : g — Mx(G). Equip g with the norm |x|; := [|p(x)||. We recall that all the
norms on g are equivalent, so it will suffice to prove analyticity w.r.t. | - [g.
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The degree n part of the series (log &DKZ)Q is the specialization to g of (log CTDKZ)n.
Now if ¥ € fo[n] and ¥? : g X g — g is its specialization to g, we have |[Y?(x,»)|; =

I (), O < (¥ 15, sup(lo L ToDID" = ¥, sup(|xlg, [1lg)", therefore [¢f] <
| |5,. We then have

~ - _op?2
> 1og @)l < Y Ilog Sxa), " < log(2 — 7T 7!

n>0 n>0

together with the fact that the series in the right has positive radius of convergence, this
implies the analyticity of the series (log ®k7)®. UJ

Proposition 41, together with the local analyticity of the CBH series, implies that
the specialization of g, belongs to Tauty'(g). It follows that A(x, »), B(x, ») are analytic
germs, and so

(KV2) (AR, B®) is an analytic germ g* — g°.

All this implies that (AR, BR) is a solution of the ‘original’ KV conjecture (as for-
mulated in [KV]) and proves 1) in Theorem 5.

Let us now prove Theorem 5, 2). One checks easily that if (A, B) is a solution of
the ‘original’ KV conjecture, then (A, B)) := (A 4 s(log(¢*¢’) — x), B 4 s(log(¢*¢) — »))
is a family of solutions. In fact, if u € SolKV (k) and (A, B) = —«(u™ "), then (A, B)) =
—i(u=!), where p, ;= Inn(¢'“*) o u; this corresponds to the action of ‘trivial’, degree 1
element of £rv on SolKV (k) (see [AT2]).

Finally, let us prove Theorem 5, 3). Let o be the antilinear automorphism of %g

s~uch that o (x) = —y, 0(») = —x. The series Pk (x,7) is real, therefore &DKz(x,y) =
Pk (—x, —y) (the bar denotes the complex conjugation). This implies that 0 (ugz)o =
Inn(e /200 (uky). Using 0o~ =€ and £(x +y) = x + », we get

1
(0 (1kz) a0 (1)) EO (k)00 (ukz) ™)~ =€+ inn(E(x +y)),

where inn(x+ ) is the inner derivation z — [x+y, 2] of fg Using now 6 (ukz) ' (x+) =
log(¢*¢”), we get

1
(@0 ()06 (kz) ™)™ =60 (ukz) ™ €0 (uxz) + inn<§ 10%(6"6”))-

Since olo™! = €, O(ukz) "0 (uxy) — £ = —(Akz, Bkz) and inn(%log(e"ey)) =
(%(log(exey) —Xx), %(log(exe’) —)), this implies

1 1
o (Axz, Bkz)o ™' = (Axz, Brz) — (§(log(6‘”ey ) —X), §(log(exey ) —y))-
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This implies
(Bxz(—p, —x), Axz(—y, —x))

1 1
= (Akz(x,9), Bz (x,2)) — (§(log(e”ey ) —X), §(log(e”ey ) —y))-

If now (A", B') := (Axz, Bxz) — i(log(e"ey) — x, log(e'¢’) — ), this implies
B'(=y, =x), A'(—y, —x)) = (A'(x, ), B'(x,)),

which by taking real parts implies (B_;.(—p, —x), A_i4s(—p, —x)) = (A_i4(x,)),
B_,,4(x,%)), proving Theorem 5, 3).
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Appendix A: The morphism GT, (k) — KV(k), cocycle identities and
profinite versions

We will show:

Proposition 44. — For [ € GT,(k), ay defined in Theorem 9 satisfies the cocycle identity

123 1.2 23 23
(25) JS(ogxg, logxgs) oo™ oo, =, oar

in Tauts (k) (see Section 3.4 and the end of the Introduction).
The group GT, (k) admits profinite and pro-/ versions. We show that:

Proposition 45. — The morphism f +—> 0{/71 admuts variants in these setups, which fit in a
commutative diagram
GT, - GT! — GT,(Q)
{ \ +

ﬁtg — Tauty ; — Tauty(Q))

and satisfy analogues of (25).
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A.1 Proof of Proposition 44. — The action of / € GT,(k) on & € M, (k) has been
defined in the Introduction. Then .o = Mol and e (¢¢) = ¢, hence M}i&fﬂ}ﬁ =

12,3 1,2 12,3 1,2 1,23, 2,3 1,23 2,3 193 23
Mo Mg oy o and (lg e = e Mo O 07

Now

(f * @) (49, tzg)Mi(..),) = D (t, tos)f (9, P~ (t19, b3) o3 P (419, 1«‘23))#?}(..).)
= @ (42, t23)uf><(”).)f(logx12, log x23)

@ @ @ @ @
asq) hollgieere) = Ma((ee)e) log x19, 13 g (e(e0)) = Mea(o(es)) log x93, and @ (9, tQS)/'L.((..).) =

/"Lo(o(oo)) :
Therefore

(f * D) (42, tQS)IU/j*CDMj*CD = (f % ) (ha, 13) ey aaye) @) 0

123 1,2
= @ (42, l‘za)M.((m Jf (ogxig, logxos)a, ",
123 2.3 1,23 2,3 123 23 93 23
while g = e e o) 0" = M.(.(..))O‘f o
Proposition 44 then follows from (f * ¢)(t12,t25)uf*¢uf*¢ = M}ﬁgﬂ,z*i and

Cb(l‘w,l‘%)l/v.((..).) “-(-(--))

A.2 Proof of Proposition 45. — Let us denote by G and G, the profinite and pro-
[ completions of a group G. The set of equations defining the group GTl(k) ‘may be
viewed as a map Fy(k) — Fy(k)?> x PB,(k). Replacmg it by maps F2 — F X PB4 and
Fy; — (Fy)* x PB,;, we define semigroups GT GT and GT1 ;- We define GT1 and GT, as
the corresponding groups. We have natural maps GT, — GT, ;= GT,(Q)) (see [Dr]).

The definitions of the semigroup Tauts and of the semigroup morphism
0 : Tauts — End(Fs) from Section 3.3 extend to the profinite and pro-/ case. We denote
by Tauts and Tautg ; the corresponding semigroups. The contravariant functor structure
of S T{aatb, Tautg ; 1s defined as in Section 3.4.

Identity (25) can be proved directly, checking the identity on each of the generators
of F5(k) and using only the duality, hexagon and pentagon relations. Extending this proof
to the profinite and pro-/ cases, one shows that if &, = (f (X, XX, (XK, XX,

then 012 Sq Qf(le, X23) = O(} 2O(fl2 3 and &ﬂ' = &j’&f

Appendix B: |1 0 and its Jacobian

B.1 Telescopic formulas. —1If O € Ob(PaB) has the form O = ¢ ® O, with

|O’| = n, then one proves by using (17) that po expresses directly in terms of pe, for
example
1234567,89 , 1234,567 8,9 12,34 5,67 3.4 6,7
He((((e0)(e))(s(00)))(e0)) = H o Ko Ko o He e e e -
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degree 0

degree 1

degree 2

degree 3

1 2 3 4 6 7

FiG. 4. — There are 8 nodes

The general formula is

n=0 veN(T"),d(v)=n

here T" is the binary planar rooted tree underlying O’; N(T") 1s the set of its nodes; d(v)
1s the degree of v (distance to the root of the tree); L(v), R(v) is the set of left and right
leaves of v (these are disjoints subsets of {1, ..., n}). The first product is taken according to
increasing values of 7 (the order in the second product does not matter as the arguments
of this product commute with each other). Here is the tree corresponding to the above
example (Figure 4):

B.2 Computation of Jacobians. — Let (L, := [Le(e. (ee))- Then:
Proposition 46. — J(u,) = (3, log T (x;) —logTe (31, x,)).

(We identified p, with its composition with ¢ = X, which belongs to TAut,.)

2,3..n n—1,n

Proof. — We have pt, = puy> " o g’ " o--- ol ". One then proves by descend-
ing induction on k that J(ug™"" o - o uly ") = (30 log Do (x) — log Te (XL, %)),

using the fact that the action of ™" on the various (logTe(x;)) as well as on

(logTe(D"L, x,)) is trivial. O
If now O € Ob(PaB) is arbitrary with |O| =n+ 1, then:
Proposition 47. — J(o.0) =] () = O logTe(x;) —logTe (DL, x:)).

Proof. — We have no = Ad ®p, oo i, where O, = o(... (e0)). We then use the co-
cycle property ofJ, the above formula for J(u,), the fact that J(Adg) = 0 for g € exp(t,+1),
and the following lemma:

Lemma 48. — Ifg € exp(%,m), then (Adg)(x; + - - - 4 x,,) s comjugate to x; + - - - + x,.
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Proof of lemma. — Decompose a € t,,) as ay + a%’Q """ ", with ¢y € f, and @ € t, (the
map a; — a%’Q """ " is the injection t, = t,41, 4 = t;). Then [4;, % 4+ -+ + x,] =0 for
t,je{l,...,n}, so [a%’2 """ x4+ x]1=0,50 [a,x + -+ x,] = [ag, x1 + -+ x,].
It follows that if g € exp(%,m), there exists x, € exp(fn) such that (Adg)(x; +--- +x,) =
x, (%) +---+x,1)9{;1. ]

Remark 49. — In [AT?2], the Lie subalgebra sdet, C tder, of special derivations
(normalized special in the terms of Thara) was introduced: sver, = {u € toer,|u(x; +-- -+
x,) = 0}. Let s0et, be the intermediate Lie algebra sder, = {u € toer,|Tup € a1 u(x +
<o+ x,) = [u, x1 + -+ - + x,]} (special derivations in Thara’s terms). So sdet, C sdet, C
toer,. Then Lemma 48 says that we have a diagram

t, — soert,

\ 4

t,p1 — s0er, — toer,

Remark 50. — Set SolKV, (k) := {u, € TAut, |, (¢" ---¢") = "7t and Ir €
Ck[[u]]|J (1) = (r(>_;x) — Y_;7(x;))}. This is a torsor under the action of the groups

KV,(k) := {an € TAut, |, (¢" -+ e™) = ¢ - - - ™

and Jo € qu[[u]]U(oe) = <G(loge"1 ceed) — Za(xi)>}

and KRV, (k), which is similarly defined (replacing ¢ ---¢ by ¢t %), These are
prounipotent groups; the Lie algebra of KRV, (k) is frv, := {u € tder,[a(d_.x) =0
and 3s € «’k[[u]]]j(a) = (s(Q_;x) — D_;s(x))}. It contains as a Lie subalgebra {%tng =
{a € rv,|s = 0}, which is denoted €v, in [AT2]. One can prove that if |O'| = n and
O =e® O, the map M, (k) — SolKV,(k), ® > ¢ o is a morphism of torsors.

Appendix C: Computation of a centralizer

In this section, we compute the centralizer of #; in t,. This result is used in the proof of
Theorem 30.

Proposition 31, — Let 1 <j € [n]. If x € t, is such that [x, ;] = O, then there exists X € k
and y € t,_, such that x = A; o AL RN

Progf: — We may and will assume that ¢ = 1,5 = 2. We then prove the result by
induction on n. It is obvious when n = 2. Assume that it has been proved at step n — 1
and let us prove it at step n. We have t, = t,_; @ f,—;, where t,_; is the Lie subalgebra
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generated by the ¢, t #j € {1, ..., n— 1} and f,_; is freely generated by the #,,, ..., t,—1 .
Both t,—; and f,—; are Lie subalgebras of t,, stable under the inner derivation [, —].
Then if x € t, is such that [#9, x] =0, we decompose x = x" 4+ f, with ' € t,_,, f € f,—1,
[t12, X1 = [#2, /] = 0. By the induction hypothesis, we have ' = A#jo + (/) '**"~! where
y et oand A ek

Let us set x; = ¢, for t=1,...,7n — 1. The derivation [t,9, —] of f,—; is given by
x> [x, x9], X0 > [x9, x1], x; = 0 for ¢ > 2. In terms of generators y, = x1, yo = x; + &y,
V3= X3, .y Pl = Xy—1, 1t 1S glven by p; = [p1,90], 9, O for 2 > 1.

Lemma 32. — The kernel of the derwation y, = [y1, po], yi = 0 for i > 1 of §,—1 coincides
with the Lie subalgebra §,—o C f,—1 generated by yo, ..., V,—1.

Proof of Lemma. — Let us prove that the kernel of the induced derivation of U(f,-,)
is U(f,—2). We have a linear isomorphism U(f,—;) >~ €,., U(f,-2)®", whose inverse takes
U Q-+ @ uy to upyugyy - - - Y. The derivation [¢)9, —] of U(f,-1) 1s then transported to
the direct sum of the endomorphisms of U(f,_5)®*

(26) w02 44— w0 4 - 454 0)

(this 1s O of £ = 1; yg) =191 ® 5, ® 1%7; we make use of the algebra structure of
U(f,_2)®"). Each of these endomorphisms has degree 1 for the filtration of U(f,_y)®"
induced by the PBW filtration of U(f,—9) (the part of degree < d of U(f,—9) for this
filtration consists of combinations of products of < d elements of f,_5) and the associated
graded endomorphism of S(f,_o)®* is the multiplication by yék) — ygl), which is injective
if £ > 1, so (26) is injective for £ > 1; the kernel of the direct sum of maps (26) therefore
coincides with the degree 1 part U(f,—2), which transports to U(f,—2) C U(f,—1). So the
kernel of the derivation [¢9, —] of U(f,—1) 1s U(f,—2). The kernel of the derivation [#9, —]

of fn—l is then fn—l N U(fn—?) = fn—Q' O

End of proof of Proposition 51. — It follows that / expresses as P(1, 4+ to,, 30y - -+ 5 bim1.0)-
Then if we set " :=P(ty 1, -+ bion1), we get f = (f)133" 50 x =x' + f = A9 +
(@/)1,2,...,n—1 +f/)12’3“”’”: as wanted. |:|
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