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ABSTRACT

Let M be a closed orientable manifold of dimension d and C ∗(M) be the usual cochain algebra on M with
coefficients in a field k. The Hochschild cohomology of M, HH∗(C ∗(M);C ∗(M)) is a graded commutative and associative
algebra. The augmentation map ε : C ∗(M) → k induces a morphism of algebras I : HH∗(C ∗(M);C ∗(M)) →
HH∗(C ∗(M); k). In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent
ideal and that the image of I is contained in the center of HH∗(C ∗(M); k), which is in general quite small. The algebra
HH∗(C ∗(M);C ∗(M)) is expected to be isomorphic to the loop homology constructed by Chas and Sullivan. Thus our
results would be translated in terms of string homology.

1. Introduction

Let M be a simply connected closed oriented d-dimensional (smooth) mani-
fold and k be a field. We denote by C ∗(M) the cochain algebra of M with
coefficients in k and by HH∗(C ∗(M);C ∗(M)) the Hochschild cohomology algebra
of C ∗(M) ([11]) with coefficients in itself. The augmentation ε : C ∗(M) → k cor-
responding to the inclusion of a base point induces a morphism of graded algebras
I : HH∗(C ∗(M);C ∗(M)) → HH∗(C ∗(M); k) .

In this paper we give a model for the algebra HH∗(C ∗(M);C ∗(M)) and for
the morphism I (3.5). From the model we directly deduce:

1. Theorem (4.1-Theorem 7). — For any field k,

a) the kernel of I is a nilpotent ideal of nilpotency index less than or equal to d/2,

b) the image of I lies in the center of HH∗(C ∗(M); k).

The morphism I connects in fact two well known homotopy invariants of
the manifold. First of all, by the Adams Cobar construction ([1], [8]): there is an
isomorphism of graded algebras

θ : HH∗(C ∗(M); k)
∼=→ H∗(ΩM; k) .

On the other hand, Jones has established an isomorphism of graded vector spaces
([12])

H∗(LM; k)
∼=→ HH∗(C ∗(M);C∗(M)) ,
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where LM = MS1
denotes the free loop space on M. Finally, the Poincaré duality

of the manifold yields an isomorphism of graded vectors spaces D : HH∗(C ∗(M);
C∗(M))

∼=→ HH∗−d(C ∗(M);C ∗(M)) (7.2-Theorem 13), and by composition an iso-
morphism of graded vector spaces

H∗(LM; k)
∼=→ HH∗−d(C ∗(M);C ∗(M)) .

Using those isomorphisms, we can replace I by

θ ◦ I : HH∗(C ∗(M);C ∗(M)) → H∗(ΩM) .

Theorem 1 shows that the image of I is in general very small comparatively to
the expected growth of HH∗(C ∗(M);C ∗(M)) ∼= H∗(MS1; k).

When k is a field of characteristic zero, Theorem 1 becomes more precise.
Let us recall that an element x ∈ πq(M) is called a Gottlieb element ([10]-p. 377), if
the map x ∨ idM : Sq ∨ M → M extends to the product Sq × M. These elements
generate a subgroup G∗(M) of π∗(ΩM) via the isomorphism π∗(ΩM) ∼= π∗+1(M).
Finally, we denote by cat M the Lusternik-Schnirelmann category of M normalized
so that cat Sn=1.

2. Theorem (5.2-Theorem 9). — If k is a field of characteristic zero then

a) the kernel of I is a nilpotent ideal of nilpotency index less than or equal to cat M.

b) (Im θ ◦ I) ∩ (π∗(ΩM) ⊗ k) = G∗(M) ⊗ k.

c)

n∑

i=0

dim (Im θ ◦ I ∩ Hi(ΩM; k)) ≤ Cnk , some constant C > 0 and k ≤ cat M.

With our model we characterize when I is a surjective morphism:

3. Theorem (6.3-Theorem 10). — The morphism I is surjective if and only if M has

the rational homotopy type of a product of odd dimensional spheres.

In ([3]), Chas and Sullivan construct a product on the desuspension,

H∗(LM; k) = H∗+d(LM; k) ,

of the free loop space homology of M. This product, called the loop product, is de-
fined at the chain level using both intersection product on the chains on M and
loop composition. The homology H∗(LM; k) is a graded commutative and asso-
ciative graded algebra. They refer to H∗(LM; k) endowed with the loop product
as the loop homology of M.

For an open set N ↪→ M containing the base point we denote by LNM
the space of loops that originate in N. By restriction, the loop product induces
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a product on H∗(LNM; k) so that the induced map H∗(LNM; k) → H∗(LM; k)

becomes a multiplicative morphism. Now the transversal intersection with ΩM de-
fines a morphism IN : H∗(LNM; k) → H∗(ΩM; k). The Chas-Sullivan loop ho-
mology and the Hochschild cohomology of M are related by a conjecture that
extends the previous works of Adams and Jones:

1. Conjecture. — There exist isomorphisms Φ and ΨN of graded algebras making com-

mutative the following diagram

H∗(LNM; k)
ΨN→ HH∗(C ∗(M);C ∗(N))

↓ IN ↓HH∗(C ∗(M);ε)

H∗(ΩM; k)
Φ→ HH∗(C ∗(M); k)

.

where ε denotes the augmentation associated to the base point of N.

There is no complete written proof of this conjecture in the litterature; how-
ever Tradler, Cohen, Jones have already understood the situation and have given
substantial parts of a proof ([4], [6]). If we assume this result, our computa-
tions give a model for the loop product on H∗(LM) and for the homomorphism
IM : H∗(LM; k) → H∗(ΩM; k).

To prove Theorem 1 we also use the following algebraic result concerning
the center of the enveloping algebra of a graded Lie algebra.

4. Theorem (5.1-Theorem 8). — Let L be a finite type graded Lie algebra defined on

a field of characteristic zero, then the center of UL is contained in the enveloping algebra on

the radical of L.
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2. Hochschild cohomology and Gerstenhaber product

In this section we fix some notations and recall the standard definitions of Hoch-
schild cohomology and of Gerstenhaber product.

2.1. Let k be a principal ideal domain; modules, tensor product, linear map, ...
are defined over k. For notational simplicity, we avoid to mention k. If V is a lower
or upper graded module (Vi = V−i) the suspension s is defined by (sV)n = Vn+1, (sV)n

= Vn−1.

2.2. Let (A, d ) be a differential graded augmented cochain algebra and (N, d )

be a differential graded A-bimodule, A = {Ai}i≥0, N = {Nj}j∈Z and A = ker(ε : A →k).
The two-sided normalized bar construction,

B(N; A; N) = N ⊗ T(sA) ⊗ N , Bk(N; A; N) = N ⊗ Tk(sA) ⊗ N ,

is defined as follows: For k ≥ 1, a generic element m[a1|a2|. . . |ak]n ∈ Bk(N; A; N) has
degree |m| + |n| +∑k

i=1(|sai|). If k = 0, we write m[ ]n = m ⊗ 1 ⊗ n ∈ N ⊗ T0(sA) ⊗ N.
The differential d = d0 + d1 is defined by:

d0 : Bk(N; A; N) → Bk(N; A; N) , d1 : Bk(N; A; N) → Bk−1(N; A; N) ,

with

d0(m[a1|a2|. . . |ak]n) = d(m)[a1|a2|. . . |ak]n

−
k∑

i=1

(−1)εi m[a1|a2|. . . |d(ai)|. . . |ak]n

+(−1)εk+1m[a1|a2|. . . |ak]d(n)

d1(m[a1|a2|. . . |ak]n) = (−1)|m|ma1[a2|. . . |ak]n

+
k∑

i=2

(−1)εi m[a1|a2|. . . |ai−1ai|. . . |ak]n

−(−1)εk m[a1|a2|. . . |ak−1]akn .

Here εi = |m| + ∑
j<i(|saj|).

2.3. For any differential graded algebra A, let Aop be the opposite graded alge-
bra, a ·op b = (−1)|a|.|b|b ·a, and Ae = A⊗Aop be the enveloping algebra. Any differential
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graded A-bimodule N is a differential graded Ae-module. Let A and N as in 2.2. The
Hochschild cochain complex C∗(A; N) of A with coefficients in N is the differential graded
module ([11], [13]):

C∗(A; N) = HomAe(B(A; A; A), N) ,

Cn(A, M) =
∏

p−q=n

HomAe(B(A, A, A)p, Nq) ,

equipped with the standard differential D defined by Df = d ◦ f − (−1)| f |f ◦ d . The
homology of the complex C∗(A; N) is called the Hochschild cohomology of A with values
in N, and is denoted HH∗(A; N).

This definition extends the classical one since:

1.Lemma ([9]-Lemma 4.3)). — If A is a differential graded algebra such that A is a k-free

graded module then the multiplication in A extends in a semi-free resolution of Ae-modules

m : B(A, A, A) −→ A .

This means that m is a quasi-isomorphism of differential graded A-bimodules
which well behaves with quasi-isomorphisms of differential graded A-bimodules. In
particular, we have the following lifting lemma:

2. Lemma ( Lifting Homotopy Lemma). — For any quasi-isomorphism ϕ : A′

→ A there exists a unique (up to homotopy in the category of differential graded bimodules) quasi-

isomorphism m̂ : B(A, A, A) −→ A′ such that m  ϕ ◦ m̂.

2.4. Recall that B(A) = B(k; A; k) := (
T(sA), d

)
is a differential graded co-

algebra with

d([a1|a2| · · · |ak]) = −
k∑

i=1

(−1)εi[a1|a2|. . . |d(ai)|. . . |ak]

+
k∑

i=2

(−1)εi[a1|a2|. . . |ai−1ai|. . . |ak] .

The canonical isomorphism of graded modules

HomAe(B(A; A; A), N) = Hom(T(sA), N) ,

carries on Hom(T(sA), N) a differential D′. Observe that the differential D′ is not the
canonical differential D of Hom(B(A), N) except when N is the trivial bimodule. If
N = A, Gerstenhaber ([11]) has proved that the usual cup product on Hom(T(sA), A)
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makes (Hom(T(sA), A), D′) a differential graded algebra such that the induced prod-
uct on HH∗(A; A), called the Gerstenhaber product ([11]) is commutative.

3. A chain model for I : HH∗(C ∗(M);C ∗(M)) → HH∗(C ∗(M); k)

In this section we construct, for any field of coefficients k, an explicit model for
the Hochschild cohomology algebra at the chain level.

3.1. Recall the Adams Cobar construction ΩC on a coaugmented differential
graded coalgebra C = k ⊕ C. This is the differential graded algebra (T(s−1C), d ),
where d = d1 + d2 is the unique derivation determined by:

d1s−1c = −s−1dc , and d2s−1c =
∑

i

(−1)|ci |s−1ci ⊗ s−1c′i , c ∈ C ,

where the reduced coproduct of c ∈ C is written ∆̄c = ∑
i ci ⊗ c′i. For sake of simplicity

we put 〈x1|x2| · · · |xn〉 := s−1x1 ⊗ · · · ⊗ s−1xn .

3.2. Assume k is a field, and M is a 1-connected compact d-dimensional mani-
fold. Denote by f : (T(V), d ) → C ∗(M) a free minimal model for the singular cochain
algebra on M ([9]), i.e. (T(V), d ) is a differential graded algebra, f is a quasi-iso-
morphism of differential graded algebras, and d(V) ⊂ T≥2(V). The differential graded
algebra (T(V), d ) is uniquely defined, up to isomorphism, by the above properties.
Moreover, Vp ∼= Hp−1(ΩM), ([9]). Denote by S a complement of the vector space
generated by the cocycles of degree d . The differential graded ideal J = (T(V))>d ⊕ S
is acyclic and the quotient algebra A = T(V)/J is a finite dimensional graded differ-
ential algebra.

3.3. Since A is finite dimensional, the graded dual A∨ is a differential graded
coalgebra and we consider the differential graded algebra ΩA∨ = (T(W), d ), with in
particular, W ∼= Hom(sA, k), and ΩA∨ = Hom(BA, k) = (Hom(T(sA), k), D) (2.4).
We choose a homogeneous linear basis ei for A, and its dual basis wi for W. This
determines the constants of structure αk

ij and ρ
j
i :

〈wi, sek〉 = −(−1)|wi |δik , ei · ej = ∑
k αk

ij ek , d(ei) = ∑
j ρ

j
i ej

d(wi) = ∑
jk a jk

i wjwk + ∑
j β

j
i wj , a jk

i = (−1)|ej |+|ej ek |αi
jk ,

β
j
i = (−1)|wj |ρi

j .

5. Theorem. — Let k be a field and M be a 1-connected closed oriented manifold of dimen-

sion d . With notation introduced above:
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a) the derivation D uniquely defined on the tensor product of graded algebras A ⊗ T(W) by





D(a ⊗ 1) = d(a) ⊗ 1 + ∑

j(−1)|a|+|ej |[a, ej] ⊗ wj , a ∈ A ,

D(1 ⊗ b) = 1 ⊗ d(b) − ∑
j(−1)|ej |ej ⊗ [wj, b] , b ∈ TW ,

is a differential. Here [ , ] denotes the Lie bracket in the graded algebras A and T(W).

b) the graded algebras H∗(A ⊗ T(W), D) and HH∗(C ∗(M);C ∗(M)) are isomorphic.

Proof. — a) is proved by a direct but laborious computation.
b) is a direct consequence of the definition. ��

Observe that this model is dual to those constructed by one of us ([13]).

1. Proposition. — Let k be a field and M be a 1-connected closed oriented manifold of

dimension d . There is a cohomology spectral sequence of graded algebras such that

E2 = HH∗(H∗(M), H∗(M)) ⇒ HH∗(C ∗(M);C ∗(M)) .

Proof. — The spectral sequence is obtained by filtering the complex
(Hom (T(sA, A), D′)) by the differential ideals Hom (T≤p(sA), A) (2.4). Since
H∗(A) = H∗(M), it follows that E1 = Hom(B(H∗(M)), k) ⊗ H∗(M) and E2 =
H∗(Hom (B(H∗(M)), k) ⊗ H∗(M), D). ��

1. Example. — If M is a formal space, (for instance M is a simply connected
compact Kähler manifold for k = Q ([7]) one can choose A = H∗(M) and thus
the algebras HH∗(H∗(M); H∗(M)) and HH∗(C ∗(M);C ∗(M)) are isomorphic graded
vector spaces. If we put H∗ = H∗(M) the algebra HH∗(C ∗(M);C ∗(M)) is isomorphic
to the graded algebra H(A ⊗ T(sH∗), D) with D(a ⊗ 1) = 0, a ∈ A and D(1 ⊗ b) =
−∑

J(−i)|ej |ej ⊗ [wj, b], b ∈ H∗.

3.4. The commutative case. — Suppose that the algebra C ∗(M) is connected
by a sequence of quasi-isomorphisms to a commutative differential graded algebra
(A, d ). This is the case if either k is of characteristic zero, or else if k is a field of
characteristic p > d ([2], Proposition 8.7). We can also suppose that A is finite dimen-
sional, A0 = k, A1 = 0, A>d = 0 and Ad = kω. Then formulas of 3.3-Theorem 5
simplify as:





D(a ⊗ 1) = d(a) ⊗ 1 ,

D(1 ⊗ b) = 1 ⊗ d(b) − ∑
j(−1)ej ej ⊗ [wj, b] .
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3.5. We can now interpret the intersection morphism in terms of our model:

6. Theorem. — Let k be a field and M be a 1-connected closed oriented manifold of dimen-

sion d . There is a commutative diagram of algebras

HH∗(C ∗(M);C ∗(M))
∼=−→ H∗(A ⊗ T(W), D)

θ◦I ↓ ↓ H(εA⊗1)

H∗(ΩM)
∼=−→ H∗(T(W), d ) .

Proof. — Recall that Hochschild cohomology HH∗(A; N) is covariant in N and
contravariant in A. Moreover, if f : A → B is a quasi-isomorphism of differential
graded algebras and g : N → N′ is a quasi-isomorphism of A-bimodules, we have
isomorphisms

HH∗(B; N)
∼=−→ HH∗(A; N)

∼=−→ HH∗(A; N′) .

We obtain therefore the following commutative diagram

HH∗(C ∗(M);C ∗(M))
∼=−→ HH∗(A; A)

∼=−→ H∗(A ⊗ T(W), D)

↓ HH∗(C ∗(M),ε) ↓ HH∗(A,εA) ↓ H(εA⊗1)

HH∗(C ∗(M); k)
∼=−→ HH∗(A; k)

∼=−→ H∗(T(W), d )

.

��

4. The kernel and the image of I

4.1. If J is an ideal of an algebra A, we put J1 = J and Jn+1 = J Jn , n ≥ 1. In
the case J is nilpotent, we define

Nil ( J) = sup {n | Jn �= 0 } .

7. Theorem. — Let k be a field and M be a simply connected closed oriented d-dimensional

manifold.

a) The kernel of the intersection morphism I is nilpotent and Nil (Ker I) ≤ d/2.

b) The image of θ ◦ I is contained in the center of H∗(ΩM).

Proof. — a) By 3.5-Theorem 6, the kernel of I is generated by the classes of
cocycles in A ⊗ T(W). Since A1 = 0 and A>d = 0, the nilpotency of the kernel of I is
less than or equal to d/2.

b) Let ei and wi be the elements defined in 3.3 and [α] be an element in the
image of H(εA ⊗ id ). Then α is a cocycle in T(W) and there exist elements αi in
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T(W) such that ᾱ = 1 ⊗ α + ∑
i ei ⊗ αi is a cycle in A ⊗ T(W). A short calculation

shows that the component of ei in d(ᾱ) is

(−1)|ei |
(

d(αi) − [wi, α] +
∑

j

β
j
i αj +

∑

j,k

a j,k
i (−1)|u||wk |αjwk

+
∑

j,k

ak j
i (−1)|wk |wkαj

)
.

Since this component must be 0, by Lemma 3 below there exists a surjective mor-
phism

H(T(W), d ) ⊗ k[u] → H(T(W), d )

that maps u to [α]. This implies that [α] is in the center of H(T(W), d ) ∼= H∗(ΩM).
��

3. Lemma. — Assume k is a field. Let α be a cycle in (T(W), d ) and let u be a variable

in the same degree. Then with the notation of 3.3:

1. There exists a surjective quasi-isomorphism

ϕ : (
T

(
wi, u, w′

i

)
, D

) → (T(W), d ) ⊗ (k[u], 0) , |w′
i| = |u| + |wi| + 1,

such that ϕ(u) = u, ϕ(wi) = wi and ϕ(w′
i) = 0, and with D defined by

D(w′
i) =[wi, u] −

∑

j

β
j
i w′

j −
∑

j,k

a j,k
i (−1)|u||wk |w′

jwk

−
∑

j,k

ak j
i (−1)|wk |wkw′

j .

2. There exists a morphism of differential graded algebras

ρ : (
T

(
wi, u, w′

i

)
, D

) → (T(W), d )

such that ρ(u) = α and ρ(wi) = wi if and only if there are elements αi ∈ T(W)

satisfying

d(αi) =[wi, α] −
∑

j

β
j
i αj −

∑

j,k

a j,k
i (−1)|u||wk |αjwk

−
∑

j,k

ak j
i (−1)|wk |wkαj .
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Proof. — We define D(w′
i) by the above formula. Proving that D2 = 0 is an easy

and standard computation. The morphism

ϕ : (
T

(
wi, u, w′

i

)
, D

) → (T(wi), d ) ⊗ (k[u], 0)

defined by ϕ(wi) = wi, ϕ(u) = u and ϕ(w′
i) = 0 is a surjective homomorphism of

differential graded algebras. To prove that ϕ is a quasi-isomorphism, we filter each
differential graded algebra by putting u in filtration degree 0 and the other variables
in filtration degree one. We are then reduced to prove that

ϕ̄ : (
T

(
wi, u, w′

i

)
, D

) → (T(wi), 0) ⊗ (k[u], 0) ,

d(wi) = 0, d
(
w′

i

) = [wi, u] ,
is a quasi-isomorphism. Denote by K the kernel of ϕ̄ and consider the short exact
sequence of complexes

0 → (K ⊗ E, D) → (
T

(
wi, u, w′

i

) ⊗ E, D
)

ϕ̄⊗1−→ ((T(wi) ⊗ k[u]) ⊗ E, D) → 0 ,

where E is the linear span of the elements 1, swi, su and sw′
i, and where D is defined

by

D(swi) = wi ⊗ 1 , D(su) = u ⊗ 1 ,

D
(
sw′

i

) = w′
i − (−1)|wi |wi ⊗ su + (−1)|u||w′

i |+|u|u ⊗ swi .

By construction, (T(wi, u, w′
i) ⊗ E, D) and (T(wi) ⊗ k[u] ⊗ E, D) are contractible and

therefore quasi-isomorphic. Now a non-zero cocycle of lowest degree in K remains
a non-trivial cocycle in the complex (K ⊗ E, D). Therefore H∗(K) = 0 and ϕ is
a quasi-isomorphism. Part 2. of Lemma 3 follows directly from the expression of D.

��

5. Determination of I when k is a field of characteristic zero

In this section k is a field of characteristic zero.

5.1. By 4.1-Theorem 7, the image of I is contained in the center of H∗(ΩM).
On the other hand, by the Milnor-Moore theorem (e.g [10]-Theorem 21.5), H∗(ΩM)

is the universal enveloping algebra of the homotopy Lie algebra LM = π∗(ΩM) ⊗ k
([10]-p. 294).

Let L be any graded algebra. The center, Z(UL), of the universal enveloping
algebra UL contains the universal enveloping algebra of the center of the Lie algebra,
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UZ(L). However the inclusion can be strict. Consider for instance the Lie algebra
L = L(a, b)/([b, b], [a, [a, b]]), with |a| = 2 and |b| = 1. The element (ab − ba)b is in
the center of UL, but not in UZ(L). We denote by R(L) the sum of all solvable ideals
in L, ([10]-p. 495).

8. Theorem. — If L = {Li}i≥1 is a graded Lie algebra over a field of characteristic zero

satisfying dim Li < ∞ then Z(UL) ⊂ UR(L).

Proof. — It is well known that in characteristic zero, UL decomposes into a direct
sum

UL = ⊕
k≥0

Γk(L)

where the Γk(L) are sub-vector spaces that are stable for the adjoint representation
of L on UL: Γ0(L) = k, Γ1(L) = L, and Γn(L) is the sub-vector space generated by
the elements ϕ(x1, ..., xn) = ∑

σ∈Σn
εσxσ(1) · · · xσ(n), xi ∈ L. The coproduct ∆ of UL

respects the decomposition, i.e.

∆ : Γn(L) → ⊕
p+q=n

Γp(L) ⊗ Γq(L) .

If we denote by ∆p the component of ∆ in Γp(L) ⊗ Γn−p(L) then

∆p(ϕ(x1, ..., xn)) =
∑

τ∈Shp

ετ

( n
p

)
ϕ(xτ(1), ..., xτ(p)) ⊗ ϕ(xτ(p+1), ..., xτ(n)) ,

where Shp denotes the set of p-shuffles of the set {1, 2, ..., n}. This implies that the

composition Γn(L)
∆p−→ Γp(L) ⊗ Γn−p(L)

multiplication−→ UL is the multiplication by
(

n
p
)

.
We then consider the composite

c : Γn(L)
∆1−→ L ⊗ Γn−1(L)

1⊗∆1−→ L ⊗ L ⊗ Γn−2(L) → · · · → L⊗n
.

Let α ∈ UL be an element in the center of UL, α = ∑n
i=1 αi with αi ∈ Γi(L).

Since Γi(L) is stable by adjunction, each αi is in the center of UL. Therefore we
can assume that α ∈ Γn(L). We write c(α) as a sum of monomials xi1 ⊗ ... ⊗ xin .
Since mult ◦ c : Γn(L) → UL is the multiplication by n!, the element α belongs
to the Lie algebra generated by the xij . Suppose that in the decomposition of c(α)

the number of monomials is minimal, then for each r, 1 ≤ r ≤ n, the elements
xi1 ⊗ ... ⊗ xir−1 ⊗ xir+1 ... ⊗ xin are linearly independent. Since [α, x] = 0, x ∈ L, we
obtain the equation:

0 =
n∑

k=1

(
∑

i

(−1)|x|·(|xi1 |+...+|xik−1 |)xi1 ⊗ ... ⊗ [x, xik ] ⊗ ... ⊗ xin

)
.

Let us assume that the xik are ordered by increasing degrees then the elements xik with
maximal degree belong to Z(L). The above equation shows also that [xik , x] belongs
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to the subvector space generated by the elements xil with higher degree. A decreasing
induction on the degree shows that all the xik belong to R(L). ��

5.2. Denote by X0 the 0-localization of a simply connected space X. The Lus-
ternik-Schnirelmann category of X0, cat X0, is less than or equal to the Lusternik-
Schnirelmann of X, cat X. Moreover the invariant cat X0 is easier to compute than
cat X, ([10]-§-27).

9. Theorem. — Let M be a simply connected oriented closed manifold and k is a field of

characteristic zero. Then

a) The kernel of I is a nilpotent ideal and Nil (Ker (I)) ≤ cat M0.

b) (Im θ ◦ I) ∩ (π∗(ΩM) ⊗ k) = G∗(M) ⊗ k.

c)

n∑

i=0

dim (Im θ ◦ I ∩ Hi(ΩM; k) ) ≤ Cnk , some constant C > 0 and k ≤ cat M0.

Proof. — a) By ([10]-Theorems 29.1 and 28.5), C ∗(M; Q) is connected by a se-
quence of quasi-isomorphisms to a connected finite dimensional commutative differ-
ential graded algebra (A, d ) satisfying Nil (A) ≤ n for n > cat M0. Thus we conclude
as in 4.1-proof of Theorem 7.

b) The differential graded algebra Ω(A∨) = (T(W), d ) is the universal envelop-
ing algebra on the graded Lie algebra LM = (L(W), d ), and the differential graded
algebra (T(W ⊕ ku ⊕ W′), D) is the universal enveloping algebra of the differential
graded Lie algebra L 1

M = (L(W ⊕ ku ⊕ W′), D), (e.g [10]-p. 289), with




d(wi) = ∑

j β
j
i wj + ∑

j,k
1
2a jk

i [wj, wk] ,
D(w′

i) = [wi, u] − ∑
j β

j
i w

′
j −

∑
j,k ak j

i (−1)|wk |[wk, w′
j

]
.

By construction LM is a free Lie model for M and L 1
M is a free Lie model for M×Sn

with n = |u|+1, ([10]-§24). Moreover there exists a bijection between homotopy classes
of maps:

[X × Sn, X] ∼= [(L(W ⊕ ku ⊕ W′), D), (L(W), d )] .
Therefore a homomorphism ϕ : (L(W⊕ku⊕W′), D) → (L(W), d ) such that ϕ(u) = α

and ϕ(w) = w, w ∈ W, corresponds to a map f : M × Sn → M which extends
idM ∨ g : M × Sn → M, such that [g] = α modulo the identifications πn(M) ⊗ k ∼=
πn−1(ΩM) ⊗ k ∼= Hn−1(L(W), d ). This means exactly that Image I ∩ (π∗(ΩM) ⊗ k) =
G∗(M) ⊗ k.

c) By Theorems 36.4, 36.5 and 35.10 of [10] we know that if L = π∗(ΩM) ⊗ k
then R(L) is finite dimensional and dim R(L)even ≤ cat M0. We conclude using the
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graded Poincaré-Birkhoff-Witt theorem ([10]-Theorem 21.1): Z(UL) ⊂ UR(L) ∼=
Λ(R(L)odd) ⊗ k[(R(L)even]. ��

6. Examples and applications

In this section we assume that k is a field.

6.1. The spheres Sn. — Since the differential graded algebra C ∗(Sn) is quasi-iso-
morphic to (H∗(Sn), 0) = (∧u/u2, 0), |u| = n, by 3.3-Example 1, HH∗(C ∗(Sn);C ∗(Sn))

is isomorphic as an algebra to

H∗(∧u ⊗ T(v), D) , |v| = n − 1 , |u| = −n ,

D(u) = 0 , D(v) = u ⊗ [v, v] .
When n is odd, D = 0, HH∗(C ∗(Sn);C ∗(Sn)) ∼= ∧u⊗T(v) and I = ε⊗1 : ∧u⊗T(v) →
T(v). When n is even, D(v2n) = 0, D(v2n+1) = 2u⊗ v2n+2. Therefore a set of generators
is given by the elements c = 1 ⊗ v2 , b = u ⊗ v , a = u ⊗ 1, |a| = −n , |b| = −1 , |c| =
2n − 2 and,

HH∗(C ∗(Sn);C ∗(Sn)) ∼= ∧(b) ⊗ k[a, c]/(2ac, a2, ab) (see also [5]) .

The homomorphism θ ◦ I : HH∗(C ∗(Sn);C ∗(Sn)) → H∗(ΩSn) = T(v) is given by:
I(c) = v2, I(a) = I(b) = 0.

6.2. An example where I is the trivial homomorphism. — Let M be the connected
sum M = (S3 ×S3 ×S3)#(S3 ×S3 ×S3). The wedge N = (S3 ×S3 ×S3)∨(S3 ×S3 ×S3)

is then obtained by attaching a 9-dimensional cell to M along the homotopy class
determined by the collar between the two components of M. Recall that

π∗(ΩN) ⊗ Q ∼= Ab(a, b, c)
∐

Ab(e, f , g) ,

where Ab(u, v, w) means the abelian Lie algebra generated by u, v and w considered
in degree 2. The inclusion i : M → N induces a surjective map π∗(ΩM) ⊗ Q →
π∗(ΩN)⊗ Q , This means that the attachment of the cell is inert in the sense of [10]-
p. 503. Therefore, ([10]-Theorem 38.5),

π∗(ΩM) ⊗ Q ∼= Ab(a, b, c)
∐

Ab(e, f , g)
∐

L(x)

with |x| = 7. In particular R(L) is zero, and by 4.1-Theorems 7 and 5.1-Theorem 8,
when k is of characteristic zero, the homomorphism I is trivial.
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6.3. Lie groups. — Let k be a field of characteristic zero and G be a connected
Lie group. Since G has the rational homotopy type of a product of odd dimensional
spheres, we obtain

HH∗(C ∗(G);C ∗(G)) ∼= ∧(u1, ..., un) ⊗ T(v1, ..., vn) ,

and IG is onto. This example generalizes in:

10. Theorem. — Let k be a field of characteristic zero and M be a simply connected closed

oriented d-dimensional manifold. The morphism θ ◦ I : HH∗(C ∗(M);C ∗(M)) → H∗(ΩM)

is surjective if and only if M has the rational homotopy type of a product of odd dimensional

spheres.

Proof. — When M has the rational homotopy type of the product of odd dimen-
sional spheres, then I is clearly surjective. Conversely, if I is surjective, then π∗(ΩM)⊗
Q = G∗(M) ⊗ Q . Thus, π∗(M) ⊗ Q = Godd ⊗ Q , ([10], Proposition 29.8). Let
{ fi : Sni → M, i = 1, · · · , r} represent a given linear basis of π∗(M) ⊗ Q , and let
ϕi : Sni × M → M be maps that restrict to fi ∨ idM on Sni ∨ M. Then the composi-
tion

Sn1 × ... × Snr ↪→ Sn1 × ... × Snr × M
1×ϕr−→ Sn1 × ... × Snr−1 × M
1×ϕr−1−→ ...

1×ϕ1−→ M

induces an isomorphism on the homotopy groups. Therefore, M has the rational ho-
motopy type of a product of odd dimensional spheres. ��

7. Hochschild cohomology and Poincaré duality

When two A-bimodules M and N are quasi-isomorphic as bimodules, then the
Hochschild cohomologies HH∗(A; M) and HH∗(A; N) are isomorphic. In this section
we relate the Hochschild cohomology of the singular cochains algebra on X with coef-
ficients in itself and with coefficients in the singular chains on X when X is a Poincaré
duality space. The usual cap product with the fundamental class is not a bimodule
morphism. However the vector spaces HHn(C ∗(M);C∗(M)) and HHn−d(C ∗(M);
C ∗(M)) are isomorphic.

7.1. Let V be a graded module, then V∨ denotes the graded dual, V∨ =
Homk(V, k), and 〈−;−〉 : V∨ ⊗ V → k denotes the duality pairing. We denote by
λV : V → V∨∨ the natural inclusion defined by 〈λV(v), ξ〉 = (−1)|ξ|〈ξ, v〉.
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7.2. Let X be topological space. The C ∗(X)-bimodule structures on C∗(X) and
C ∗(X)∨ are explicitly defined by:

f · c · g := (−1)|c|(| f |+|g|)+| f |+| f | |g|(g ⊗ id ⊗ f )(∆X ⊗ id) ◦ ∆X(c) ,

c ∈ C∗(X) ,

〈 f · α · g; h〉 := (−1)| f |〈α; g ∪ h ∪ f 〉 , f , g, h ∈ C ∗(X), α ∈ C ∗(X)∨ .

Remark that the associativity properties of AW and of ∆X imply directly that C∗(X)

is a graded C ∗(X)-bimodule.
Let 1 ∈ C 0(X) be the 0-cochain which value is 1 on the points of X. The usual

cap product is then defined by

C p(X) ⊗ Ck(X)−→Ck−p(X) ,

f ⊗ c �→ f ∩ c = f · c · 1 =
∑

i

(−1)|ci |·| f |ci f
(
c′i
)
.

The cap product with a cycle x ∈ Ck(X) is a well defined homomorphism of differ-
ential graded modules, but is not a “degree k homomorphism” of C ∗(X)-bimodules.
However,

11. Theorem. — Let X be a path connected space and c ∈ C∗(X) be a cycle of degree

k > 0. Then there exists a (degree k) morphism of C ∗(X)-bimodules

γc : B(C ∗(X),C ∗(X),C ∗(X)) → C∗(X)

such that

• γc(1[ ]1) = c,
• H(γc) ◦ H(m)−1 : H∗(X) → H∗(X) is the cap product by [c], m is the quasi-

isomorphism of C ∗(X)-modules defined in 2.3-Lemma 1.

Recall that γc is a degree k morphism of C ∗(X)-bimodules means that the fol-
lowing two properties are satisfied:

a) d ◦ γc = (−1)kγc ◦ d ,
b) γc( f · α · g) = (−1)| f | kf · γc(α) · g,

for f , g ∈ C ∗(X) and α ∈ B(C ∗(X),C ∗(X),C ∗(X)).

Proof. — For simplicity we denote by Ae the enveloping algebra of A = C ∗(X)

and by B the differential graded C ∗(X)-bimodule B(C ∗(X),C ∗(X),C ∗(X)).
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Recall the loop space fibration ev : XS1→X, γ �→ γ(0) = γ(1) with the canon-
ical section σ : X → XS1

, x �→ the constant loop at x. Jones defined a quasi-isomorphism
of differential graded modules ([4]-Theorem 8),

J∗ : B ⊗Ae A → C ∗(XS1
)

making commutative the following diagram of differential graded modules

B ⊗Ae A
J∗→ C ∗(XS1

)

i ↖ ↗ C ∗(ev)

C ∗(X)

where i : C ∗(X) → B ⊗Ae C ∗(X) , f �→ 1[ ]1 ⊗ f , denotes the canonical inclusion. Let
ρ be the composite C ∗(σ) ◦ J∗ then ρ is a retraction of i: ρ ◦ i = id .

Let u ∈ C k(X)∨, k > 0, be a cycle. Using the canonical isomorphism of differ-
ential graded modules

Ψ : Hom(B ⊗Ae A, k) → HomAe(B, A∨) , (Ψ(θ)(α)) ( f ) = θ(α ⊗ f ) ,

we define the map

θu : B(C ∗(X),C ∗(X),C ∗(X)) → (C ∗(X))∨ , θu = Ψ(u ◦ ρ) .

The element θu is a k-cycle in HomAe(B, A∨) and for any f ∈ A, θu(1[ ]1)( f ) =
u ◦ ρ(1[ ]1 ⊗ f ) = u ◦ ρ ◦ i( f ) = u( f ) .

Since the linear map

λ : C∗(X) → C ∗(X)∨

is a morphism of differential graded C ∗(X)-bimodules, for a cycle c ∈ Ck(X), we have
a morphism

θλ(c) : B(C ∗(X),C ∗(X),C ∗(X)) → (C ∗(X))∨

with θλ(c)(1[ ]1) = λ(c).
Since B(C ∗(X),C ∗(X),C ∗(X)) is semifree, we deduce from the lifting homo-

topy property (2.3-Lemma 2) a morphism of C ∗(X)-bimodules

γc : B(C ∗(X),C ∗(X),C ∗(X)) → C∗(X)

making commutative, up to homotopy, the diagram

B(C ∗(X),C ∗(X),C ∗(X))
θλ(c)−→ C ∗(X)∨

‖ ↑ λ

B(C ∗(X),C ∗(X),C ∗(X))
γc−→ C∗(X)
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and such that γc(1[ ]1) = c. The equality H(γc) ◦ H(m)−1 = − ∩ [c] comes from the
commutativity of the diagram

B0(C ∗(X),C ∗(X),C ∗(X))
θλ(c)→ C ∗(X)∨

m ↓ ↑ λ

C ∗(X)
−∩c−→ C∗(X)

i.e., for any f , g, h ∈ C ∗(X), we have 〈θλ(c)( f [ ]g), h〉 = 〈λ ◦ (− ∩ c) ◦ m( f [ ]g), h〉 . ��
As a special case, we deduce:

12. Theorem. — Let M be a 1-connected k-Poincaré duality space of formal dimension d .

Then there are quasi-isomorphisms of C ∗(M)-bimodules

C ∗(M)
m← B(C ∗(M),C ∗(M),C ∗(M))

γ→ C∗(M)

where m is defined in 2.3-Lemma 1 and γ = γ[M] with [M] ∈ Hd(M) a fundamental class

of M. In particular, the composite, H(m) ◦ H(γ)−1 is the Poincaré isomorphism P : H∗(M) →
Hd−∗(M).

Applying Hochschild cohomology, we obtain:

13. Theorem. — Let M be a 1-connected k-Poincaré duality space of formal dimension d
then there exist natural linear isomorphisms

D : HHn(C ∗(M);C∗(M))
∼=−→ HHn−d(C ∗(M);C ∗(M)) .

Proof. — Let ϕ : N → N′ be a homomorphism of differential graded A-bimodules
and assume that A is a k-module. Then we deduce from 2.3-Lemma 1 (see [9] for
more details) that ϕ induces an isomorphism of graded modules

HH∗(A; N) → HH∗(A; N′) .

Theorem 13 follows directly from Theorem 12 when one observes that the suspended
map sdγ is a quasi-isomorphism of differential graded C ∗(X)-bimodules. ��
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