A proof of A. Gabrielov’s rank theorem
[Théorème du rang de Gabrielov]
Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1329-1396.

Cet article contient une preuve complète du théorème du rang de Gabrielov, un résultat fondamental en géométrie analytique locale. Nous appuyant sur les travaux de Gabrielov et Tougeron, nous développons des techniques de géométrie formelle qui clarifient les parties difficiles de la preuve originale. Ces techniques ont un intérêt intrinsèque, comme l’illustre par exemple une nouvelle preuve très courte du théorème d’Abhyankar-Jung présentée ici. Nous donnons aussi de nouvelles extensions du théorème du rang en algèbre commutative (liées au théorème principal de Zariski et à la théorie de l’élimination).

This article contains a complete proof of Gabrielov’s rank theorem, a fundamental result in the study of analytic map germs. Inspired by the works of Gabrielov and Tougeron, we develop formal-geometric techniques which clarify the difficult parts of the original proof. These techniques are of independent interest, and we illustrate this by adding a new (very short) proof of the Abhyankar-Jung theorem. We include, furthermore, new extensions of the rank theorem (concerning the Zariski main theorem and elimination theory) to commutative algebra.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.173
Classification : 13J05, 32B05, 12J10, 13A18, 13B35, 14B05, 14B20, 30C10, 32A22, 32S45
Keywords: Local analytic geometry, formal power series, Weierstrass preparation theorem, rank of an analytic map, Abhyankar-Jung’s theorem
Mot clés : Géométrie analytique locale, séries formelles, théorème de préparation de Weierstrass, rang d’une application analytique, théorème d’Abhyankar-Jung
Belotto da Silva, André 1 ; Curmi, Octave 1 ; Rond, Guillaume 1

1 Université Aix-Marseille, Institut de Mathématiques de Marseille (UMR CNRS 7373), Centre de Mathématiques et Informatique 39 rue F. Joliot Curie, 13013 Marseille, France
@article{JEP_2021__8__1329_0,
     author = {Belotto da Silva, Andr\'e and Curmi, Octave and Rond, Guillaume},
     title = {A proof of {A.} {Gabrielov{\textquoteright}s} rank theorem},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {1329--1396},
     publisher = {Ecole polytechnique},
     volume = {8},
     year = {2021},
     doi = {10.5802/jep.173},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.173/}
}
TY  - JOUR
AU  - Belotto da Silva, André
AU  - Curmi, Octave
AU  - Rond, Guillaume
TI  - A proof of A. Gabrielov’s rank theorem
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2021
SP  - 1329
EP  - 1396
VL  - 8
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.173/
DO  - 10.5802/jep.173
LA  - en
ID  - JEP_2021__8__1329_0
ER  - 
%0 Journal Article
%A Belotto da Silva, André
%A Curmi, Octave
%A Rond, Guillaume
%T A proof of A. Gabrielov’s rank theorem
%J Journal de l’École polytechnique — Mathématiques
%D 2021
%P 1329-1396
%V 8
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.173/
%R 10.5802/jep.173
%G en
%F JEP_2021__8__1329_0
Belotto da Silva, André; Curmi, Octave; Rond, Guillaume. A proof of A. Gabrielov’s rank theorem. Journal de l’École polytechnique — Mathématiques, Tome 8 (2021), pp. 1329-1396. doi : 10.5802/jep.173. http://www.numdam.org/articles/10.5802/jep.173/

[Abh58] Abhyankar, Shreeram Shankar On the ramification of algebraic functions. II. Unaffected equations for characteristic two, Trans. Amer. Math. Soc., Volume 89 (1958), pp. 310-324 | DOI | MR | Zbl

[Abh64] Abhyankar, Shreeram Shankar Local analytic geometry, Pure and Applied Math., XIV, Academic Press, New York-London, 1964 | MR | Zbl

[ABM08] Adamus, J.; Bierstone, Edward; Milman, Pierre D. Uniform linear bound in Chevalley’s lemma, Canad. J. Math., Volume 60 (2008) no. 4, pp. 721-733 | DOI | MR | Zbl

[AM70] Abhyankar, Shreeram Shankar; Moh, T. T. A reduction theorem for divergent power series, J. reine angew. Math., Volume 241 (1970), pp. 27-33 | MR | Zbl

[Art68] Artin, M. On the solutions of analytic equations, Invent. Math., Volume 5 (1968), pp. 277-291 | DOI | Zbl

[AvdP70] Abhyankar, Shreeram Shankar; van der Put, M. Homomorphisms of analytic local rings, J. reine angew. Math., Volume 242 (1970), pp. 26-60 | MR | Zbl

[BB19] Belotto da Silva, A.; Bierstone, Edward Monomialization of a quasianalytic morphism, 2019 | arXiv

[Bec77] Becker, Joseph Exposé on a conjecture of Tougeron, Ann. Inst. Fourier (Grenoble), Volume 27 (1977) no. 4, pp. 9-27 | DOI | Numdam | MR | Zbl

[BM82] Bierstone, Edward; Milman, Pierre D. Composite differentiable functions, Ann. of Math. (2), Volume 116 (1982) no. 3, pp. 541-558 | DOI | MR | Zbl

[BM87a] Bierstone, Edward; Milman, Pierre D. Relations among analytic functions. I, Ann. Inst. Fourier (Grenoble), Volume 37 (1987) no. 1, pp. 187-239 | DOI | Numdam | MR

[BM87b] Bierstone, Edward; Milman, Pierre D. Relations among analytic functions. II, Ann. Inst. Fourier (Grenoble), Volume 37 (1987) no. 2, pp. 49-77 | DOI | Numdam | MR

[BM00] Bierstone, Edward; Milman, Pierre D. Subanalytic geometry, Model theory, algebra, and geometry (Math. Sci. Res. Inst. Publ.), Volume 39, Cambridge Univ. Press, Cambridge, 2000, pp. 151-172 | MR | Zbl

[BP18] Bierstone, Edward; Parusiński, Adam Global smoothing of a subanalytic set, Duke Math. J., Volume 167 (2018) no. 16, pp. 3115-3128 | DOI | MR | Zbl

[BS83] Bierstone, Edward; Schwarz, Gerald W. Continuous linear division and extension of 𝒞 functions, Duke Math. J., Volume 50 (1983) no. 1, pp. 233-271 | DOI | MR | Zbl

[BZ79] Becker, Joseph; Zame, William R. Applications of functional analysis to the solution of power series equations, Math. Ann., Volume 243 (1979) no. 1, pp. 37-54 | DOI | MR | Zbl

[CCD13] Cano, F.; Cerveau, D.; Déserti, J. Théorie élémentaire des feuilletages holomorphes singuliers, Collection Échelles, Belin, Paris, 2013

[Che43] Chevalley, Claude On the theory of local rings, Ann. of Math. (2), Volume 44 (1943), pp. 690-708 | DOI | MR | Zbl

[Cho58] Chow, Wei Liang On the theorem of Bertini for local domains, Proc. Nat. Acad. Sci. U.S.A., Volume 44 (1958), pp. 580-584 | DOI | MR | Zbl

[CJPR19] Castro-Jiménez, Francisco-Jesús; Popescu, Dorin; Rond, Guillaume Linear nested Artin approximation theorem for algebraic power series, Manuscripta Math., Volume 158 (2019) no. 1-2, pp. 55-73 | DOI | MR | Zbl

[CM82] Cerveau, D.; Mattei, J.-F. Formes intégrables holomorphes singulières, Astérisque, 97, Société Mathématique de France, Paris, 1982, 193 pages | Zbl

[dJP00] de Jong, Theo; Pfister, Gerhard Local analytic geometry. Basic theory and applications, Advanced Lectures in Math., Friedr. Vieweg & Sohn, Braunschweig, 2000 | DOI | Zbl

[EH77] Eakin, Paul M.; Harris, Gary A. When Φ(f) convergent implies f is convergent, Math. Ann., Volume 229 (1977) no. 3, pp. 201-210 | DOI | MR | Zbl

[Eis52] Eisenstein, G. Über eine allgemeine Eigenschaft der Reihen-Entwicklungen aller Algebraischen Funktionen, Bericht Königl. Preuss. Akad. d. Wiss. Zu Berlin (1852), pp. 441-443

[Gab71] Gabrièlov, A. M. The formal relations between analytic functions, Funkcional. Anal. i Priložen., Volume 5 (1971) no. 4, pp. 64-65 | MR

[Gab73] Gabrièlov, A. M. Formal relations among analytic functions, Izv. Akad. Nauk SSSR Ser. Mat., Volume 37 (1973), pp. 1056-1090 | MR

[Gel60] Gel’fond, A. O. Transcendental and algebraic numbers, Dover Publications, Inc., New York, 1960 | Zbl

[Gil69] Gilmer, Robert Integral dependence in power series rings, J. Algebra, Volume 11 (1969), pp. 488-502 | DOI | MR | Zbl

[GP00] González Pérez, P. D. Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canad. J. Math., Volume 52 (2000) no. 2, pp. 348-368 | DOI | Zbl

[Gro61] Grothendieck, A. Techniques de construction en géométrie analytique VI, Familles d’espaces complexes et fondements de la géométrie analytique (Séminaire Henri Cartan), Volume 13 no. 1, Secrétariat mathématique, Paris, 1960/61 (Exp. no. 13)

[Hir75] Hironaka, Heisuke Flattening theorem in complex-analytic geometry, Amer. J. Math., Volume 97 (1975), pp. 503-547 | DOI | MR | Zbl

[Hir86] Hironaka, Heisuke Local analytic dimensions of a subanalytic set, Proc. Japan Acad. Ser. A Math. Sci., Volume 62 (1986) no. 2, pp. 73-75 http://projecteuclid.org/euclid.pja/1195514460 | MR | Zbl

[Izu86] Izumi, Shuzo Gabrielov’s rank condition is equivalent to an inequality of reduced orders, Math. Ann., Volume 276 (1986) no. 1, pp. 81-89 | DOI | MR | Zbl

[Izu89] Izumi, Shuzo The rank condition and convergence of formal functions, Duke Math. J., Volume 59 (1989) no. 1, pp. 241-264 | DOI | MR | Zbl

[Jun08] Jung, Heinrich W. E. Darstellung der Funktionen eines algebraischen Körpers zweier unabhängigen Veränderlichen x,y in der Umgebung einer Stelle x=a,y=b, J. reine angew. Math., Volume 133 (1908), pp. 289-314 | DOI | Zbl

[KV04] Kiyek, K.; Vicente, J. L. On the Jung-Abhyankar theorem, Arch. Math. (Basel), Volume 83 (2004) no. 2, pp. 123-134 | DOI | MR | Zbl

[Lan88] Lang, Serge Introduction to Arakelov theory, Springer-Verlag, New York, 1988 | DOI | Zbl

[Mah62] Mahler, K. On some inequalities for polynomials in several variables, J. London Math. Soc., Volume 37 (1962), pp. 341-344 | DOI | MR | Zbl

[Mal67] Malgrange, B. Ideals of differentiable functions, TIFR Studies in Math., 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967 | MR

[Mal77] Malgrange, B. Frobenius avec singularités. II. Le cas général, Invent. Math., Volume 39 (1977) no. 1, pp. 67-89 | DOI | Zbl

[Mat89] Matsumura, Hideyuki Commutative ring theory, Cambridge Studies in Advanced Math., 8, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[McD95] McDonald, John Fiber polytopes and fractional power series, J. Pure Appl. Algebra, Volume 104 (1995) no. 2, pp. 213-233 | DOI | MR | Zbl

[Mil78] Milman, Pierre D. Analytic and polynomial homomorphisms of analytic rings, Math. Ann., Volume 232 (1978) no. 3, pp. 247-253 | DOI | MR | Zbl

[MT76] Moussu, Robert; Tougeron, Jean-Claude Fonctions composées analytiques et différentiables, C. R. Acad. Sci. Paris Sér. A-B, Volume 282 (1976) no. 21, p. A1237-A1240 | Zbl

[Nag62] Nagata, Masayoshi Local rings, Interscience Tracts in Pure and Applied Math., 13, Interscience Publishers, New York-London, 1962 | MR | Zbl

[Osg16] Osgood, William F. On functions of several complex variables, Trans. Amer. Math. Soc., Volume 17 (1916) no. 1, pp. 1-8 | DOI | MR

[Paw89] Pawłucki, Wiesław On relations among analytic functions and geometry of subanalytic sets, Bull. Polish Acad. Sci. Math., Volume 37 (1989) no. 1-6, p. 117-125 (1990) | MR | Zbl

[Paw90] Pawłucki, Wiesław Points de Nash des ensembles sous-analytiques, Mem. Amer. Math. Soc., 84, no. 425, American Mathematical Society, Providence, RI, 1990 | DOI | MR | Zbl

[Paw92] Pawłucki, Wiesław On Gabrielov’s regularity condition for analytic mappings, Duke Math. J., Volume 65 (1992) no. 2, pp. 299-311 | DOI | MR | Zbl

[PR12] Parusiński, Adam; Rond, Guillaume The Abhyankar-Jung theorem, J. Algebra, Volume 365 (2012), pp. 29-41 | DOI | MR | Zbl

[Rem57] Remmert, Reinhold Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann., Volume 133 (1957), pp. 328-370 | DOI | MR | Zbl

[Ron09] Rond, Guillaume Homomorphisms of local algebras in positive characteristic, J. Algebra, Volume 322 (2009) no. 12, pp. 4382-4407 | DOI | MR | Zbl

[Ron18] Rond, Guillaume Artin approximation, J. Singul., Volume 17 (2018), pp. 108-192 | DOI | MR | Zbl

[Tam81] Tamm, Martin Subanalytic sets in the calculus of variation, Acta Math., Volume 146 (1981) no. 3-4, pp. 167-199 | DOI | MR | Zbl

[Tar48] Tarski, Alfred A decision method for elementary algebra and geometry, RAND Corporation, Santa Monica, Calif., 1948 | Zbl

[Tou72] Tougeron, Jean-Claude Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb. (3), 71, Springer-Verlag, Berlin-New York, 1972 | Zbl

[Tou76] Tougeron, Jean-Claude Courbes analytiques sur un germe d’espace analytique et applications, Ann. Inst. Fourier (Grenoble), Volume 26 (1976) no. 2, pp. 117-131 | DOI | MR | Zbl

[Tou90] Tougeron, Jean-Claude Sur les racines d’un polynôme à coefficients séries formelles, Real analytic and algebraic geometry (Trento, 1988) (Lect. Notes in Math.), Volume 1420, Springer, Berlin, 1990, pp. 325-363 | DOI | MR | Zbl

[Zar48] Zariski, Oscar Analytical irreducibility of normal varieties, Ann. of Math. (2), Volume 49 (1948), pp. 352-361 | DOI | MR | Zbl

[Zar50] Zariski, Oscar Sur la normalité analytique des variétés normales, Ann. Inst. Fourier (Grenoble), Volume 2 (1950), p. 161-164 (1951) | DOI | Numdam | Zbl

Cité par Sources :