Topological properties of Ważewski dendrite groups
[Propriétés topologiques des groupes d’homéomorphismes des dendrites de Ważewski]
Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 431-477.

Les groupes d’homéomorphismes des dendrites de Ważewski généralisées agissent sur l’ensemble des points de branchement de la dendrite et possèdent ainsi une topologie de groupe polonais agréable. Dans cet article, nous étudions ces groupes à la lumière de cette topologie polonaise. Le groupe d’homéomorphismes de la dendrite universelle de Ważewski D est remarquable puisque c’est le seul avec une classe de conjugaison dense. Pour ce groupe, G , nous explorons et prouvons certaines de ses propriétés topologiques comme l’existence d’une classe de conjugaison comaigre, la propriété de Steinhaus, la propriété de continuité automatique, la propriété des groupes de petit indice et une caractérisation de la topologie. De plus, nous décrivons le flot minimal universel de G et des stabilisateurs de points de D . Cela nous permet de montrer que les stabilisateurs de points de D sont des groupes moyennables et de donner une description simple et explicite du bord de Furstenberg universel de G .

Homeomorphism groups of generalized Ważewski dendrites act on the infinite countable set of branch points of the dendrite and thus have a nice Polish topology. In this paper, we study them in the light of this Polish topology. The group of the universal Ważewski dendrite D is more characteristic than the others because it is the unique one with a dense conjugacy class. For this group G , we explore and prove some of its topological properties like the existence of a comeager conjugacy class, the Steinhaus property, automatic continuity, the small index subgroup property and characterization of the topology. Moreover, we describe the universal minimal flow of G and of point-stabilizers. This enables us to prove that point-stabilizers in G are amenable and to give a simple and completely explicit description of the universal Furstenberg boundary of G .

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jep.121
Classification : 22F50, 57S05, 37B05
Keywords: Ważewski dendrites, groups of homeomorphisms, Polish groups, Steinhaus property, generic elements, automatic continuity, universal flows
Mot clés : Dendrites de Ważewski, groupes d’homéomorphismes, groupes polonais, propriété de Steinhaus, éléments génériques, continuité automatique, flots universels
Duchesne, Bruno 1

1 Institut Élie Cartan, UMR 7502, Université de Lorraine et CNRS Boulevard des Aiguillettes, B.P. 70239, F-54506 Vandoeuvre-lès-Nancy Cedex, France
@article{JEP_2020__7__431_0,
     author = {Duchesne, Bruno},
     title = {Topological properties of {Wa\.zewski~dendrite} groups},
     journal = {Journal de l{\textquoteright}\'Ecole polytechnique {\textemdash} Math\'ematiques},
     pages = {431--477},
     publisher = {Ecole polytechnique},
     volume = {7},
     year = {2020},
     doi = {10.5802/jep.121},
     zbl = {07179025},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jep.121/}
}
TY  - JOUR
AU  - Duchesne, Bruno
TI  - Topological properties of Ważewski dendrite groups
JO  - Journal de l’École polytechnique — Mathématiques
PY  - 2020
SP  - 431
EP  - 477
VL  - 7
PB  - Ecole polytechnique
UR  - http://www.numdam.org/articles/10.5802/jep.121/
DO  - 10.5802/jep.121
LA  - en
ID  - JEP_2020__7__431_0
ER  - 
%0 Journal Article
%A Duchesne, Bruno
%T Topological properties of Ważewski dendrite groups
%J Journal de l’École polytechnique — Mathématiques
%D 2020
%P 431-477
%V 7
%I Ecole polytechnique
%U http://www.numdam.org/articles/10.5802/jep.121/
%R 10.5802/jep.121
%G en
%F JEP_2020__7__431_0
Duchesne, Bruno. Topological properties of Ważewski dendrite groups. Journal de l’École polytechnique — Mathématiques, Tome 7 (2020), pp. 431-477. doi : 10.5802/jep.121. http://www.numdam.org/articles/10.5802/jep.121/

[AN98] Adeleke, S. A.; Neumann, Peter M. Relations related to betweenness: their structure and automorphisms, Mem. Amer. Math. Soc., 131 no. 623, American Mathematical Society, Providence, RI, 1998 | DOI | Zbl

[Bow99] Bowditch, Brian Hayward Treelike structures arising from continua and convergence groups, Mem. Amer. Math. Soc., 139 no. 662, American Mathematical Society, Providence, RI, 1999 | DOI | Zbl

[BYMT17] Ben Yaacov, Itaï; Melleray, Julien; Tsankov, Todor Metrizable universal minimal flows of Polish groups have a comeagre orbit, Geom. Funct. Anal., Volume 27 (2017) no. 1, pp. 67-77 | DOI | MR | Zbl

[Cam09] Cameron, Peter J. Oligomorphic permutation groups, Perspectives in mathematical sciences. II (Stat. Sci. Interdiscip. Res.), Volume 8, World Sci. Publ., Hackensack, NJ, 2009, pp. 37-61 | DOI | MR | Zbl

[DHM89] Droste, M.; Holland, W. C.; Macpherson, H. D. Automorphism groups of infinite semilinear orders. I, II, Proc. London Math. Soc. (3), Volume 58 (1989) no. 3, p. 454-478, 479–494 | DOI | MR | Zbl

[DM18] Duchesne, B.; Monod, N. Group actions on dendrites and curves, Ann. Inst. Fourier (Grenoble), Volume 68 (2018) no. 5, pp. 2277-2309 http://aif.cedram.org/item?id=AIF_2018__68_5_2277_0 | DOI | MR | Zbl

[DM19] Duchesne, B.; Monod, N. Structural properties of dendrite groups, Trans. Amer. Math. Soc., Volume 371 (2019) no. 3, pp. 1925-1949 | DOI | MR | Zbl

[DMW19] Duchesne, B.; Monod, N.; Wesolek, P. Kaleidoscopic groups: permutation groups constructed from dendrite homeomorphisms, Fund. Math., Volume 247 (2019) no. 3, pp. 229-274 | DOI | MR | Zbl

[DNT86] Dixon, John D.; Neumann, Peter M.; Thomas, Simon Subgroups of small index in infinite symmetric groups, Bull. London Math. Soc., Volume 18 (1986) no. 6, pp. 580-586 | DOI | MR | Zbl

[Gla76] Glasner, Shmuel Proximal flows, Lect. Notes in Math., 517, Springer-Verlag, Berlin-New York, 1976 | MR | Zbl

[GW02] Glasner, E.; Weiss, B. Minimal actions of the group 𝕊() of permutations of the integers, Geom. Funct. Anal., Volume 12 (2002) no. 5, pp. 964-988 | DOI

[GW08] Glasner, Eli; Weiss, Benjamin Topological groups with Rokhlin properties, Colloq. Math., Volume 110 (2008) no. 1, pp. 51-80 | DOI | MR | Zbl

[HHLS93] Hodges, Wilfrid; Hodkinson, Ian; Lascar, Daniel; Shelah, Saharon The small index property for ω-stable ω-categorical structures and for the random graph, J. London Math. Soc. (2), Volume 48 (1993) no. 2, pp. 204-218 | DOI

[Hjo00] Hjorth, Greg Classification and orbit equivalence relations, Mathematical Surveys and Monographs, 75, American Mathematical Society, Providence, RI, 2000 | MR | Zbl

[HLP14] Hrushovski, Ehud; Loeser, François; Poonen, Bjorn Berkovich spaces embed in Euclidean spaces, Enseign. Math., Volume 60 (2014) no. 3-4, pp. 273-292 | DOI | MR | Zbl

[Kal86] Kallman, Robert R. Uniqueness results for homeomorphism groups, Trans. Amer. Math. Soc., Volume 295 (1986) no. 1, pp. 389-396 | DOI | MR | Zbl

[Kec13] Kechris, A. S. Dynamics of non-archimedean Polish groups, European Congress of Mathematics, European Mathematical Society, Zürich, 2013, pp. 375-397 | MR | Zbl

[KPT05] Kechris, A. S.; Pestov, V. G.; Todorcevic, S. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal., Volume 15 (2005) no. 1, pp. 106-189 | DOI | Zbl

[KR07] Kechris, A. S.; Rosendal, Christian Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. London Math. Soc. (3), Volume 94 (2007) no. 2, pp. 302-350 | DOI | MR | Zbl

[Kwi18] Kwiatkowska, Aleksandra Universal minimal flows of generalized Ważewski dendrites, J. Symbolic Logic, Volume 83 (2018) no. 4, pp. 1618-1632 | DOI | MR | Zbl

[MVTT15] Melleray, Julien; Van Thé, Lionel Nguyen; Tsankov, Todor Polish groups with metrizable universal minimal flows, Internat. Math. Res. Notices, Volume 2016 (2015) no. 5, pp. 1285-1307 | DOI | Zbl

[Nad92] Nadler, Sam Bernard Jr. Continuum theory. An introduction, Monographs and Textbooks in Pure and Applied Math., 158, Marcel Dekker, Inc., New York, 1992 | Zbl

[NVT13] Nguyen Van Thé, L. More on the Kechris-Pestov-Todorcevic correspondence: precompact expansions, Fund. Math., Volume 222 (2013) no. 1, pp. 19-47 | DOI | MR | Zbl

[Pes98] Pestov, V. G. On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc., Volume 350 (1998) no. 10, pp. 4149-4165 | DOI | MR | Zbl

[Pes06] Pestov, V. G. Dynamics of infinite-dimensional groups. The Ramsey-Dvoretzky-Milman phenomenon, University Lecture Series, 40, American Mathematical Society, Providence, RI, 2006 | DOI | Zbl

[Ros09] Rosendal, Christian Automatic continuity of group homomorphisms, Bull. Symbolic Logic, Volume 15 (2009) no. 2, pp. 184-214 | DOI | MR | Zbl

[RS07] Rosendal, Christian; Solecki, Sławomir Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math., Volume 162 (2007), pp. 349-371 | DOI | MR | Zbl

[Sie28] Sierpiński, W. Sur une décomposition d’ensembles, Monatsh. Math. Phys., Volume 35 (1928) no. 1, pp. 239-242 | DOI | Zbl

[Sok15] Sokić, Miodrag Semilattices and the Ramsey property, J. Symbolic Logic, Volume 80 (2015) no. 4, pp. 1236-1259 | DOI | MR | Zbl

[SY17] Shi, Enhui; Ye, Xiangdong Periodic points for amenable group actions on dendrites, Proc. Amer. Math. Soc., Volume 145 (2017) no. 1, pp. 177-184 | DOI | MR | Zbl

[Tru92] Truss, J. K. Generic automorphisms of homogeneous structures, Proc. London Math. Soc. (3), Volume 65 (1992) no. 1, pp. 121-141 | DOI | MR | Zbl

[Tru07] Truss, J. K. On notions of genericity and mutual genericity, J. Symbolic Logic, Volume 72 (2007) no. 3, pp. 755-766 | DOI | Zbl

[Zuc18] Zucker, Andy Maximally highly proximal flows, 2018 | arXiv

Cité par Sources :