Géométrie
Combinatorics of Bricard’s octahedra
[Combinatoire des octaèdres de Bricard]
Comptes Rendus. Mathématique, Tome 359 (2021) no. 1, pp. 7-38.

Dans cet article, on donne une preuve alternative de la classification des mouvements d’un octaèdre, originalement obtenue par Bricard au début du XX e siècle. On utilise une construction combinatoire avec un certain nombre de règles essentielles. Ces règles reposent sur une machinerie bien connue dans la géométrie algébrique moderne : l’espace de modules des courbes rationnelles stables avec des points marqués, utilisé pour codifier les configurations de graphes sur la sphère. On introduit un certain nombre d’objets et de règles : une fois que l’on les assume, la classification des mouvements d’un octaèdre telle que l’on expose devient élémentaire (bien que pas triviale) et peut être appréciée par le lecteur sans besoin de connaissances préalables très approfondies sur le sujet. We thank Celeste Damiani for helping us with the translation into French.

We re-prove the classification of motions of an octahedron — obtained by Bricard at the beginning of the XX century — by means of combinatorial objects satisfying some elementary rules. The explanations of these rules rely on the use of a well-known creation of modern algebraic geometry, the moduli space of stable rational curves with marked points, for the description of configurations of graphs on the sphere. Once one accepts the objects and the rules, the classification becomes elementary (though not trivial) and can be enjoyed without the need of a very deep background on the topic.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.132
Classification : 52C25
Gallet, Matteo 1 ; Grasegger, Georg 2 ; Legerský, Jan 3, 4 ; Schicho, Josef 3

1 International School for Advanced Studies/Scuola Internazionale Superiore di Studi Avanzati (ISAS/SISSA), Trieste, Italy
2 Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
3 Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC), Linz, Austria
4 Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic
@article{CRMATH_2021__359_1_7_0,
     author = {Gallet, Matteo and Grasegger, Georg and Legersk\'y, Jan and Schicho, Josef},
     title = {Combinatorics of {Bricard{\textquoteright}s} octahedra},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {7--38},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.132},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/crmath.132/}
}
TY  - JOUR
AU  - Gallet, Matteo
AU  - Grasegger, Georg
AU  - Legerský, Jan
AU  - Schicho, Josef
TI  - Combinatorics of Bricard’s octahedra
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 7
EP  - 38
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
UR  - http://www.numdam.org/articles/10.5802/crmath.132/
DO  - 10.5802/crmath.132
LA  - en
ID  - CRMATH_2021__359_1_7_0
ER  - 
%0 Journal Article
%A Gallet, Matteo
%A Grasegger, Georg
%A Legerský, Jan
%A Schicho, Josef
%T Combinatorics of Bricard’s octahedra
%J Comptes Rendus. Mathématique
%D 2021
%P 7-38
%V 359
%N 1
%I Académie des sciences, Paris
%U http://www.numdam.org/articles/10.5802/crmath.132/
%R 10.5802/crmath.132
%G en
%F CRMATH_2021__359_1_7_0
Gallet, Matteo; Grasegger, Georg; Legerský, Jan; Schicho, Josef. Combinatorics of Bricard’s octahedra. Comptes Rendus. Mathématique, Tome 359 (2021) no. 1, pp. 7-38. doi : 10.5802/crmath.132. http://www.numdam.org/articles/10.5802/crmath.132/

[1] Alexandrov, Victor The Dehn invariants of the Bricard octahedra, J. Geom., Volume 99 (2010) no. 1–2, pp. 1-13 | DOI | MR | Zbl

[2] Alexandrov, Victor; Connelly, Robert Flexible suspensions with a hexagonal equator, Ill. J. Math., Volume 55 (2011) no. 1, pp. 127-155 | DOI | MR | Zbl

[3] Baker, J. Eddie An analysis of the Bricard linkages, Mech. Mach. Theory, Volume 15 (1980) no. 4, pp. 267-286 | DOI

[4] Baker, J. Eddie On Bricard’s doubly collapsible octahedron and its planar, spherical and skew counterparts, J. Franklin Inst., Volume 332B (1995) no. 6, pp. 657-679 | DOI | MR | Zbl

[5] Baker, J. Eddie On the skew network corresponding to Bricard’s doubly collapsible octahedron, Proc. Inst. Mech. Eng. C, Volume 223 (2009) no. 5, pp. 1213-1221 | DOI

[6] Bennett, Geoffrey T. Deformable octahedra, Proc. Lond. Math. Soc., Volume 10 (1912) no. 1, pp. 309-343 | DOI | Zbl

[7] Bricard, Raoul Mémoire sur la théorie de l’octaèdre articulé, J. Math. Pures Appl., Volume 3 (1897), pp. 113-148 | Zbl

[8] Bricard, Raoul Leçons de cinématique. I Cinématique théoretique, Gauthier-Villars, 1926 | Zbl

[9] Bricard, Raoul Leçons de cinématique. II Cinématique appliquée, Gauthier-Villars, 1927 | Zbl

[10] Bushmelev, A. V.; Sabitov, Idzhad K. Configuration spaces of Bricard octahedra, Ukr. Geom. Sb., Volume 33 (1990), pp. 36-41 | DOI | Zbl

[11] Cauchy, Augustin Recherche sur les polyèdres — premier mémoire, J. Éc. Polytech., Math., Volume 9 (1813) no. 16, pp. 66-86 (available at https://gallica.bnf.fr/ark:/12148/bpt6k90193x/f13)

[12] Connelly, Robert A counterexample to the rigidity conjecture for polyhedra, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 333-338 | DOI | Numdam | Zbl

[13] Connelly, Robert The rigidity of suspensions, J. Differ. Geom., Volume 113 (1978) no. 3, pp. 399-408 | DOI | MR | Zbl

[14] Gaifullin, Alexander A.; Ignashchenko, Leonid S. Dehn invariant and scissors congruence of flexible polyhedra, Proc. Steklov Inst. Math., Volume 302 (2018) no. 1, pp. 130-145 | DOI | Zbl

[15] Gallet, Matteo; Grasegger, Georg; Legerský, Jan; Schicho, Josef On the existence of paradoxical motions of generically rigid graphs on the sphere (2019) (https://arxiv.org/abs/1908.00467, accepted for publication in SIAM Journal on Discrete Mathematics)

[16] Ghomi, Mohammad Open problems in geometry of curves and surfaces (2020) (http://people.math.gatech.edu/~ghomi/Papers/op.pdf)

[17] Gluck, Herman Almost all simply connected closed surfaces are rigid, Geometric topology (Proc. Conf., Park City, Utah, 1974) (Lecture Notes in Mathematics), Volume 438, Springer (1974), pp. 225-239 | DOI | Zbl

[18] Izmestiev, Ivan Classification of flexible Kokotsakis polyhedra with quadrangular base, Int. Math. Res. Not., Volume 2017 (2017) no. 3, pp. 715-808 | DOI | MR | Zbl

[19] Kokotsakis, Antonios Über bewegliche Polyeder, Math. Ann., Volume 107 (1933) no. 1, pp. 627-647 | DOI | Zbl

[20] Lebesgue, Henri Octaèdres articulés de Bricard, Enseign. Math., Volume 13 (1967), pp. 175-185 | Zbl

[21] Mikhalëv, Sergeĭ N. Some necessary metric conditions for the flexibility of suspensions, Vestn. Mosk. Univ., Volume 77 (2001) no. 3, pp. 15-21 | MR | Zbl

[22] Mikhalëv, Sergeĭ N. Isometric realizations of Bricard octahedra of the first and second types with known volumes, Fundam. Prikl. Mat., Volume 8 (2002) no. 3, pp. 755-768 | MR | Zbl

[23] Nawratil, Georg Flexible octahedra in the projective extension of the Euclidean 3-space, J. Geom. Graph., Volume 14 (2010) no. 2, pp. 147-169 | MR | Zbl

[24] Nawratil, Georg; Rasoulzadeh, Arvin Kinematically redundant octahedral motion platform for virtual reality simulations, New Advances in Mechanism and Machine Science, Volume 22, Springer, 2018, pp. 387-400 | DOI

[25] Nelson, Gerald D. Extending Bricard Octahedra (2010) (https://arxiv.org/abs/1011.5193)

[26] Nelson, Gerald D. Generalizations of Bricard Octahedra (2012) (https://arxiv.org/abs/1206.2588)

[27] Schulze, Bernd Symmetry as a sufficient condition for a finite flex, SIAM J. Discrete Math., Volume 24 (2010) no. 4, pp. 1291-1312 | DOI | MR | Zbl

[28] Stachel, Hellmuth Zur Einzigkeit der Bricardschen Oktaeder, J. Geom., Volume 28 (1987) no. 1, pp. 41-56 | DOI | MR | Zbl

[29] Stachel, Hellmuth A kinematic approach to Kokotsakis meshes, Comput. Aided Geom. Des., Volume 27 (2010) no. 6, pp. 428-437 | DOI | MR | Zbl

[30] Stachel, Hellmuth Flexible polyhedral surfaces with two flat poses, Symmetry, Volume 7 (2015) no. 2, pp. 774-787 | DOI | MR | Zbl

Cité par Sources :