Soient un espace symétrique de type non compact et un groupe discret d’isométries de du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de sur .
Let be a symmetric space of noncompact type and a discrete group of isometries of of Schottky type. In this paper, we give asymptotics of the orbitals counting functions associated to the action of on .
Mot clés : groupes de Lie, sous-groupes discrets, géométrie en rang supérieur, formalisme thermodynamique.
Keywords: Lie groups, discrete subgroups, higher rank geometry, thermodynamical formalism
@article{AIF_2005__55_2_373_0, author = {Quint, Jean-Fran\c{c}ois}, title = {Groupes de {Schottky} et comptage}, journal = {Annales de l'Institut Fourier}, pages = {373--429}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {2}, year = {2005}, doi = {10.5802/aif.2102}, mrnumber = {2147895}, zbl = {1087.22010}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2102/} }
TY - JOUR AU - Quint, Jean-François TI - Groupes de Schottky et comptage JO - Annales de l'Institut Fourier PY - 2005 SP - 373 EP - 429 VL - 55 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2102/ DO - 10.5802/aif.2102 LA - fr ID - AIF_2005__55_2_373_0 ER -
Quint, Jean-François. Groupes de Schottky et comptage. Annales de l'Institut Fourier, Tome 55 (2005) no. 2, pp. 373-429. doi : 10.5802/aif.2102. http://www.numdam.org/articles/10.5802/aif.2102/
[16 Mesures de Patterson-Sullivan en rang supérieur, Geometric and functional analysis, Volume 12 (2002), pp. 776-809 | DOI | MR | Zbl
[1] Precise counting results for closed orbits of Anosov flows, Annales Scientifiques de l'École Normale Supérieure, Volume 33 (2000), pp. 33-56 | Numdam | MR | Zbl
[2] Lalley's theorem on periodic orbits of hyperbolic flows, Ergodic theory and dynamical systems, Volume 18 (1998), pp. 17-39 | MR | Zbl
[3] Propriétés asymptotiques des groupes linéaires, Geometric and functional analysis, Volume 7 (1997), pp. 1-47 | DOI | MR | Zbl
[4] Propriétés asymptotiques des groupes linéaires (II), Advanced studies in pure mathematics, Volume 26 (2000), pp. 33-48 | MR | Zbl
[5] Limit sets of groups of linear transformations (Sankhya Series A), Volume 62 (2000), pp. 367-385 | Zbl
[6] Prevalence of rapid mixing in hyperbolic flows, Ergodic theory and dynamical systems, Volume 18 (1998), pp. 1097-1114 | DOI | MR | Zbl
[7] Mixing, counting and equidistribution in Lie groups, Duke mathematical journal, Volume 71 (1993), pp. 181-209 | DOI | MR | Zbl
[8] Differential geometry, Lie groups and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, San Diego, 1978 | MR | Zbl
[9] Closed orbits in homology classes, Publications mathématiques de l'IHES, Volume 71 (1990), pp. 5-32 | Numdam | MR | Zbl
[10] Renewal theorems in symbolic dynamics, with application to geodesic flows, noneuclidean tessellations and their fractal limits, Acta mathematica, Volume 163 (1989), pp. 1-55 | DOI | MR | Zbl
[11] -regular elements in Zariski dense subgroups, Oxford quaterly journal of mathematics, Volume 45 (1994), pp. 541-545 | MR | Zbl
[12] Zeta functions and the periodic orbit structure for hyperbolic dynamics (Astérisque), Volume 187-188 (1990) | Numdam | Zbl
[13] Linear actions of free groups, Annales de l'institut Fourier, Volume 51 (2001), pp. 131-150 | DOI | Numdam | MR | Zbl
[14] Asymptotic expansions for closed orbits in homology classes, GeometriæDedicata, Volume 87 (2001), pp. 123-160 | MR | Zbl
[15] Divergence exponentielle des sous-groupes discrets en rang supérieur, Commentarii Mathematicii Helvetici, Volume 77 (2002), pp. 563-608 | DOI | MR | Zbl
[17] L'indicateur de croissance des groupes de Schottky, Ergodic theory and dynamical systems, Volume 23 (2003), pp. 249-272 | MR | Zbl
[18] Ergodicité et équidistribution en courbure négative (Mémoires), Volume 95 (2003) | Numdam | Zbl
[18] The infinite word problem and limit sets in Fuchsian groups, Ergodic theory and dynamical systems, Volume 1 (1981), pp. 337-360 | MR | Zbl
[19] Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque, Journal f\" ur die reine und angewandte Mathematik, Volume 247 (1971), pp. 196-220 | MR | Zbl
Cité par Sources :