We develop a recursive method for computing the -removed -orderings and -orderings of order the characteristic sequences associated to these and limits associated to these sequences for subsets of a Dedekind domain This method is applied to compute these objects for and .
DOI : 10.5802/acirm.31
Mots clés : integer valued polynomials, $p$-orderings, $p$-sequence, divided differences, finite differences
@article{ACIRM_2010__2_2_33_0, author = {Johnson, Keith}, title = {Computing $r$-removed $P$-orderings and $P$-orderings of order $h$}, journal = {Actes des rencontres du CIRM}, pages = {33--40}, publisher = {CIRM}, volume = {2}, number = {2}, year = {2010}, doi = {10.5802/acirm.31}, zbl = {06938579}, language = {en}, url = {http://www.numdam.org/articles/10.5802/acirm.31/} }
TY - JOUR AU - Johnson, Keith TI - Computing $r$-removed $P$-orderings and $P$-orderings of order $h$ JO - Actes des rencontres du CIRM PY - 2010 SP - 33 EP - 40 VL - 2 IS - 2 PB - CIRM UR - http://www.numdam.org/articles/10.5802/acirm.31/ DO - 10.5802/acirm.31 LA - en ID - ACIRM_2010__2_2_33_0 ER -
Johnson, Keith. Computing $r$-removed $P$-orderings and $P$-orderings of order $h$. Actes des rencontres du CIRM, Tome 2 (2010) no. 2, pp. 33-40. doi : 10.5802/acirm.31. http://www.numdam.org/articles/10.5802/acirm.31/
[1] Fonctions -lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. Math. France, Volume 101 (1973), pp. 397-411 | DOI | Numdam | MR | Zbl
[2] Finite Generation Properties for Various Rings of Integer Valued Polynomials , J. Algebra, Volume 322 (2009), pp. 1129-1150 | DOI | MR | Zbl
[3] The factorial function and generalizations, Am. Math. Monthly, Volume 107 (2000), pp. 783-799 | DOI | MR | Zbl
[4] On -orderings, Rings of Integer Valued Polynomials and Ultrametric Analysis, J. Amer. Math. Soc., Volume 22(4) (2009), pp. 963-993 | DOI | MR | Zbl
[5] -orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math., Volume 490 (1997), pp. 101-127 | MR | Zbl
[6] A Note on Integral Valued Polynomials, Indagationes Math., Ser. A, Volume 62 (1959), pp. 294-299 | DOI | MR | Zbl
[7] Integer Valued Polynomials, Amer. Math. Soc., 1997
[8] -orderings of Finite Subsets of Dedekind Domains, J. Algebraic Combinatorics, Volume 30 (2009), pp. 233-253 | DOI | MR | Zbl
[9] Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory, Volume 129 (2009), pp. 2933-2942 | DOI | MR | Zbl
Cité par Sources :