Computing r-removed P-orderings and P-orderings of order h
Actes des rencontres du CIRM, Tome 2 (2010) no. 2, pp. 33-40.

We develop a recursive method for computing the r-removed P-orderings and P-orderings of order h, the characteristic sequences associated to these and limits associated to these sequences for subsets S of a Dedekind domain D. This method is applied to compute these objects for S= and S=p.

Publié le :
DOI : 10.5802/acirm.31
Classification : 13F20, 11C08, 11S05, 13B25
Mots clés : integer valued polynomials, $p$-orderings, $p$-sequence, divided differences, finite differences
Johnson, Keith 1

1 Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
@article{ACIRM_2010__2_2_33_0,
     author = {Johnson, Keith},
     title = {Computing $r$-removed $P$-orderings and $P$-orderings of order $h$},
     journal = {Actes des rencontres du CIRM},
     pages = {33--40},
     publisher = {CIRM},
     volume = {2},
     number = {2},
     year = {2010},
     doi = {10.5802/acirm.31},
     zbl = {06938579},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/acirm.31/}
}
TY  - JOUR
AU  - Johnson, Keith
TI  - Computing $r$-removed $P$-orderings and $P$-orderings of order $h$
JO  - Actes des rencontres du CIRM
PY  - 2010
SP  - 33
EP  - 40
VL  - 2
IS  - 2
PB  - CIRM
UR  - http://www.numdam.org/articles/10.5802/acirm.31/
DO  - 10.5802/acirm.31
LA  - en
ID  - ACIRM_2010__2_2_33_0
ER  - 
%0 Journal Article
%A Johnson, Keith
%T Computing $r$-removed $P$-orderings and $P$-orderings of order $h$
%J Actes des rencontres du CIRM
%D 2010
%P 33-40
%V 2
%N 2
%I CIRM
%U http://www.numdam.org/articles/10.5802/acirm.31/
%R 10.5802/acirm.31
%G en
%F ACIRM_2010__2_2_33_0
Johnson, Keith. Computing $r$-removed $P$-orderings and $P$-orderings of order $h$. Actes des rencontres du CIRM, Tome 2 (2010) no. 2, pp. 33-40. doi : 10.5802/acirm.31. http://www.numdam.org/articles/10.5802/acirm.31/

[1] Barsky, D. Fonctions k-lipschitziennes sur un anneau local et polynômes à valeurs entières, Bull. Soc. Math. France, Volume 101 (1973), pp. 397-411 | DOI | Numdam | MR | Zbl

[2] Bhargava, M.; Cahen, P.-J.; Yeramian, J. Finite Generation Properties for Various Rings of Integer Valued Polynomials , J. Algebra, Volume 322 (2009), pp. 1129-1150 | DOI | MR | Zbl

[3] Bhargava, M. The factorial function and generalizations, Am. Math. Monthly, Volume 107 (2000), pp. 783-799 | DOI | MR | Zbl

[4] Bhargava, M. On P-orderings, Rings of Integer Valued Polynomials and Ultrametric Analysis, J. Amer. Math. Soc., Volume 22(4) (2009), pp. 963-993 | DOI | MR | Zbl

[5] Bhargava, M. P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math., Volume 490 (1997), pp. 101-127 | MR | Zbl

[6] Carlitz, L. A Note on Integral Valued Polynomials, Indagationes Math., Ser. A, Volume 62 (1959), pp. 294-299 | DOI | MR | Zbl

[7] Cahen, P.-J.; Chabert, J.-L. Integer Valued Polynomials, Amer. Math. Soc., 1997

[8] Johnson, K. P-orderings of Finite Subsets of Dedekind Domains, J. Algebraic Combinatorics, Volume 30 (2009), pp. 233-253 | DOI | MR | Zbl

[9] Johnson, K. Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory, Volume 129 (2009), pp. 2933-2942 | DOI | MR | Zbl

Cité par Sources :