Selfsimilar expanders of the harmonic map flow
Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 743-773.

On étudie lʼexistence, lʼunicité et la stabilité de solutions auto-similaires issues dʼune singularité, pour le flot gradient des applications harmoniques, dans le cadre équivariant. On montre lʼexistence de telles solutions auto-similaires, et comment leurs propriétés dʼunicité et de stabilité sont étroitement reliées à la minimisation ou non de lʼénergie de Dirichlet par lʼapplication équateur.

We study the existence, uniqueness, and stability of self-similar expanders of the harmonic map heat flow in equivariant settings. We show that there exist selfsimilar solutions to any admissible initial data and that their uniqueness and stability properties are essentially determined by the energy-minimising properties of the so-called equator maps.

@article{AIHPC_2011__28_5_743_0,
     author = {Germain, Pierre and Rupflin, Melanie},
     title = {Selfsimilar expanders of the harmonic map flow},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {743--773},
     publisher = {Elsevier},
     volume = {28},
     number = {5},
     year = {2011},
     doi = {10.1016/j.anihpc.2011.06.004},
     mrnumber = {2838400},
     zbl = {1246.35059},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2011.06.004/}
}
TY  - JOUR
AU  - Germain, Pierre
AU  - Rupflin, Melanie
TI  - Selfsimilar expanders of the harmonic map flow
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2011
SP  - 743
EP  - 773
VL  - 28
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2011.06.004/
DO  - 10.1016/j.anihpc.2011.06.004
LA  - en
ID  - AIHPC_2011__28_5_743_0
ER  - 
%0 Journal Article
%A Germain, Pierre
%A Rupflin, Melanie
%T Selfsimilar expanders of the harmonic map flow
%J Annales de l'I.H.P. Analyse non linéaire
%D 2011
%P 743-773
%V 28
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2011.06.004/
%R 10.1016/j.anihpc.2011.06.004
%G en
%F AIHPC_2011__28_5_743_0
Germain, Pierre; Rupflin, Melanie. Selfsimilar expanders of the harmonic map flow. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 743-773. doi : 10.1016/j.anihpc.2011.06.004. http://www.numdam.org/articles/10.1016/j.anihpc.2011.06.004/

[1] M. Bertsch, R. Dal Passo, R. Van Der Hout, Nonuniqueness for the heat flow of harmonic maps on the disk, Arch. Rat. Mech. Anal. 161 no. 2 (2002), 93-112 | MR | Zbl

[2] P. Biernat, P. Bizon, private communication.

[3] H. Brezis, J.M. Coron, E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649-705 | MR | Zbl

[4] T. Cazenave, J. Shatah, S. Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang–Mills fields, Ann. Inst. H. Poincaré Phys. Théor. 68 no. 3 (1998), 315-349 | EuDML | Numdam | MR | Zbl

[5] Y. Chen, The weak solutions to the evolution problems of harmonic maps, Math. Z. 201 no. 1 (1989), 69-74 | EuDML | MR | Zbl

[6] Y. Chen, M. Struwe, Existence and partial regularity results for the heat flow for harmonic maps, J. Differential Geometry 201 no. 1 (1989), 83-103 | EuDML | MR | Zbl

[7] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, International Series in Pure and Applied Mathematics, McGraw–Hill (1955) | MR | Zbl

[8] J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps, Ann. Inst. H. Poincaré, Analyse Non Linéaire 7 no. 4 (1990), 335-344 | EuDML | Numdam | MR | Zbl

[9] J. Eells, A. Ratto, Harmonic Maps and Minimal Immersions with Symmetries, Annals of Mathematics Studies, Princeton University Press (1993) | MR | Zbl

[10] M. Escobedo, O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 no. 10 (1987), 1103-1133 | MR | Zbl

[11] H. Fan, Existence of the self-similar solutions in the heat flow of harmonic maps, Sci. China, Ser. A 42 (1999), 113-132 | MR | Zbl

[12] A. Freire, Uniqueness of the harmonic map flow in two dimensions, Calc. Var. 3 no. 1 (1995), 95-105 | MR | Zbl

[13] V. Galaktionov, J. Vazquez, Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math. 50 no. 1 (1997), 1-67 | MR | Zbl

[14] A. Gastel, Regularity theory for minimizing equivariant (p-)harmonic mappings, Calc. Var. 6 no. 4 (1998), 329-367 | MR | Zbl

[15] A. Gastel, The extrinsic polyharmonic map heat flow in the critical dimension, Adv. Geom. 6 no. 10 (2006), 595-613 | MR | Zbl

[16] P. Germain, On the existence of smooth self-similar blowup profiles for the wave map equation, Comm. Pure Appl. Math. 62 no. 5 (2009), 706-728 | MR | Zbl

[17] A. Haraux, F. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 no. 2 (1982), 167-189 | MR | Zbl

[18] M.-C. Hong, Some new examples for nonuniqueness of the evolution problem of harmonic maps, Comm. Anal. Geom. 6 no. 4 (1998), 809-818 | MR | Zbl

[19] T. Ilmanen, Lectures on mean curvature flow and related equations, Lecture Notes ICTP, Trieste, 1995.

[20] H. Kaul, W. Jäger, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983), 146-161 | EuDML | MR | Zbl

[21] H. Koch, T. Lamm, Geometric flows with rough initial data, arXiv:0902.1488v1 (2009) | MR

[22] F. Lin, C. Wang, On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chinese Ann. Math. Ser. B 31 no. 6 (2010), 921-938 | MR | Zbl

[23] F. Lin, C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008) | MR

[24] Y. Naito, Non-uniqueness of solutions to the Cauchy problem for semilinear heat equations with singular initial data, Math. Ann. 329 no. 1 (2004), 161-196 | MR | Zbl

[25] Y. Naito, An ode approach to the multiplicity of self-similar solutions for semi-linear heat equations, Proc. Roy. Soc. Edinburgh Sect. A 4 (2006), 807-835 | MR | Zbl

[26] L. Peletier, D. Terman, F. Weissler, On the equation δu+1 2xΔu+f(u)=0, Arch. Rat. Mech. Anal. 94 no. 1 (1986), 83-99 | MR | Zbl

[27] M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag (1984) | MR | Zbl

[28] P. Quittner, P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts Basler Lehrbücher, Birkhäuser Verlag, Basel (2007) | MR | Zbl

[29] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. 4: Analysis of Operators, Academic Press (1972)

[30] J. Rubinstein, P. Sternberg, J. Keller, Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math. 49 no. 6 (1995), 1722-1733 | MR | Zbl

[31] M. Rupflin, An improved uniqueness result for the harmonic map flow in two dimensions, Calc. Var. 33 no. 3 (2008), 329-341 | MR | Zbl

[32] M. Rupflin, Harmonic map flow and variants, PhD thesis, ETH Zurich, 2010.

[33] J. Shatah, Weak solutions and development of singularities of the su (2) σ-model, Comm. Pure Appl. Math. 41 no. 4 (1988), 459-469 | MR | Zbl

[34] R. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs vol. 49, American Mathematical Society, Providence, RI (1997) | MR | Zbl

[35] P. Souplet, F. Weissler, Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 no. 2 (2003), 213-235 | EuDML | Numdam | MR | Zbl

[36] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), 558-581 | EuDML | MR | Zbl

[37] M. Struwe, On the evolution of harmonic maps in higher dimensions, J. Differential Geometry 28 no. 3 (1988), 485-502 | MR | Zbl

[38] P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Research Notices 10 (2002), 558-581 | MR | Zbl

[39] J.L. Vazquez, E. Zuazua, The hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal. 173 (2000), 103-153 | MR | Zbl

[40] C.-Y. Wang, Bubble phenomena of certain palais-smale sequences from surfaces to general targets, Houston J. Math. 22 (1996), 559-590 | MR | Zbl

[41] F. Weissler, Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations, Arch. Rat. Mech. Anal. 91 no. 3 (1985), 247-266 | MR | Zbl

Cité par Sources :