Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article | Next article
Guerre, S.
La propriété de Banach Saks ne passe pas de $E$ à $L^2(E)$, d'après J. Bourgain. Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980), Exp. No. 8, 9 p.
Full text djvu | pdf | Reviews MR 604391 | Zbl 0454.46021 | 1 citation in Numdam

stable URL: http://www.numdam.org/item?id=SAF_1979-1980____A7_0

Bibliography

[1] D.J. Aldous: Unconditional bases and martingales in L P(F), Maths. Proc. Cambridge Soc. (1979) 85-117.  MR 510406 |  Zbl 0389.46027
[2] B. Beauzamy: Banach Saks properties and spreading models, Centre de Mathématiques de l'Ecole Polytechnique 1978.
[3] J. Bourgain: On the Banach Saks property in Lebesgue spaces, Vrije Universiteit, Brussel, preprint 1979.
[4] A. Brunel and L. Sucheston: On B-convex Banach spaces, Maths. Systems theory, vol. 7, No 4 (1973).  MR 438085 |  Zbl 0323.46018
[5] T. Figiel and L. Sucheston: An application of Ramsey sets in analysis, Advances in Maths., vol. 20, No 2 (1976).  MR 417757 |  Zbl 0325.46029
[6] S. Guerre et J.T. Lapresté: Quelques propriétés des modèles étalés sur les espaces de Banach, preprint, Université Paris VI, 1979.
[7] J. Lindenstrauss et L. Tzafriri: Classical Banach spaces, vol. 1, 2, Springer Verlag MLN 92.  MR 415253 |  Zbl 0852.46015
[8] H.P. Rosenthal: Weakly independent sequences and the Banach Saks property, Proceedings of the Durham Symposium, July 1975.
[9] J. Silver: Every analytic set is Ramsey, J. Symb. Logic, 35 (1970) p. 60-64.  MR 332480 |  Zbl 0216.01304
Copyright Cellule MathDoc 2014 | Credit | Site Map