Search and download archives of mathematical journals

 
 
  Table of contents for this issue | Previous article | Next article
Johnson, W. B.
Operators into $L_p$ which factor through $l_p$. Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz") (1979-1980), Exp. No. 17, 6 p.
Full text djvu | pdf

stable URL: http://www.numdam.org/item?id=SAF_1979-1980____A14_0

Bibliography

[1] T. Figiel and W.B. Johnson, A uniformly convex Banach space which contains no lp, Compositio Math. 29 (1974), 179-190.
Numdam |  MR 355537 |  Zbl 0301.46013
[2] W.B. Johnson, Operators into L which factor through l p, J. London Math. Soc. (2) 14 (1976), 333-339.  MR 425667 |  Zbl 0413.47025
[3] W.B. Johnson, Quotients of L which are quotients of l p, Compositio Math.
Numdam |  Zbl 0375.46023
[4] W.B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), 201-205.
Article |  MR 430756 |  Zbl 0362.46015
[5] W.B. Johnson and E.W. Odell, Subspaces of L which embed into l p, Compositio Math. 28 (1974), 34-49.
Numdam |  Zbl 0282.46020
[6] M.I. Kadec and A. Peczynski, Bases, lacunary sequences, and complemented subspaces in the spaces Lp Studia Math. 21 (1962), 161-176.
Article |  Zbl 0102.32202
[7] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, I, Sequence spaces, Springer-Verlag, Ergebnisse No. 92 (1977).  MR 500056 |  Zbl 0362.46013
[8] A. Peczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
Article |  MR 126145 |  Zbl 0104.08503
[9] H.P. Rosenthal, On the subspaces of Lp (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.  MR 271721 |  Zbl 0213.19303
Copyright Cellule MathDoc 2014 | Credit | Site Map