Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Mustapha, Sami
Bornes inférieures pour les marches aléatoires sur les groupes p-adiques moyennables. Annales de l'I.H.P. Probabilités et statistiques, 42 no. 1 (2006), p. 81-88
Texte intégral djvu | pdf | Analyses Zbl 1102.60041 | 2 citations dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPB_2006__42_1_81_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] G. Alexopoulos, A lower estimate for central probabilities on polycyclic groups, Canad. J. Math. 44 (1992) 897-910.  MR 1186471 |  Zbl 0762.31003
[2] G. Bachman, Introduction to p-Adic Numbers and Valuation Theory, Academic Press, 1964.  MR 169847 |  Zbl 0192.40103
[3] A. Borel, J. Tits, Groupes réductifs, Publ. Math. IHES 27 (1965) 55-150.
Numdam |  MR 207712 |  Zbl 0145.17402
[4] J.W.S. Cassels, Local Fields, Cambridge University Press, 1986.  MR 861410 |  Zbl 0595.12006
[5] C. Chevalley, Théorie des Groupes de Lie, tome III, Hermann, 1955.  MR 68552
[6] Th. Coulhon, Large time behaviour of heat kernels on Riemannian manifolds: fast and slow decays, in: Journées équations aux dérivées partielles, St-Jean-de-Monts, 1998, pp. 1-12.
Numdam |  MR 1640375 |  Zbl 1021.35014
[7] Th. Coulhon, A. Grigor'yan, On diagonal lower bounds for heat kernels on non-compact manifolds and Markov chains, Duke Math. J. 89 (1) (1997) 133-199.
Article |  MR 1458975 |  Zbl 0920.58064
[8] Th. Coulhon, A. Grigor'yan, Ch. Pittet, A geometric approach to on-diagonal heat kernel lower bounds on groups, Ann. Inst. Fourier 51 (6) (2001) 1763-1827.
Numdam |  MR 1871289 |  Zbl 01710118
[9] A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana 10 (2) (1994) 395-452.  MR 1286481 |  Zbl 0810.58040
[10] A. Grigor'yan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom. 45 (1) (1997) 33-52.  MR 1443330 |  Zbl 0865.58042
[11] R.I. Grigorchuk, Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 49 (5) (1984) 939-985, English translation: Math. USSR-Izv. 25 (1985), 259–300.  MR 764305 |  Zbl 0583.20023
[12] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973) 333-379.
Numdam |  MR 369608 |  Zbl 0294.43003
[13] W. Hebisch, On heat kernels on Lie groups, Math. Z. 210 (1992) 593-605.
Article |  MR 1175724 |  Zbl 0792.22007
[14] W. Hebisch, L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993) 673-709.
Article |  MR 1217561 |  Zbl 0776.60086
[15] N. Jacobson, Lie Algebras, Interscience, 1962.  MR 143793 |  Zbl 0121.27504
[16] J. Jenkins, Growth of connected locally compact groups, J. Funct. Anal. 12 (1973) 113-127.  MR 349895 |  Zbl 0247.43001
[17] S. Mustapha, Random walks on unimodular p-adic groups, Preprint.  MR 2134485
[18] S. Mustapha, Gaussian estimates for heat kernels on Lie groups, Math. Proc. Cambridge Philos. Soc. 128 (1) (2000) 45-64.  MR 1724427 |  Zbl 0947.22007
[19] Ch. Pittet, Følner sequences on polycyclic groups, Rev. Mat. Iberoamericana 11 (3) (1995) 675-686.  MR 1363210 |  Zbl 0842.20035
[20] Ch. Pittet, L. Saloff-Coste, A survey on the relationship between volume growth, isoperimetry, and the behavior of simple random walk on Cayley graphs, with examples, Preprint, 1997.
[21] Ch. Pittet, L. Saloff-Coste, Amenable groups, isoperimetric profiles and random walks, in: Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 293-316.  MR 1714851 |  Zbl 0934.43001
[22] Ch. Pittet, L. Saloff-Coste, On random walks on wreath products, Ann. Probab. 30 (2) (2002) 1-30.
Article |  MR 1905862 |  Zbl 1021.60004
[23] Ch. Pittet, L. Saloff-Coste, Random walks on finite rank solvable groups, J. Eur. Math. Soc. 4 (2003) 313-342.  MR 2017850 |  Zbl 1057.20026
[24] C.R.E. Raja, On classes of p-adic Lie groups, New York J. Math. 5 (1999) 101-105.  MR 1703206 |  Zbl 0923.22006
[25] H. Rieter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monograph, Oxford University Press, 1968.  MR 306811 |  Zbl 0165.15601
[26] J.-P. Serre, Lie Algebras and Lie Groups, Benjamin, New York, 1965.  MR 218496 |  Zbl 0132.27803
[27] T.A. Springer, Linear algebraic groups, in: Parshin A.N., Shafarevich I.R. (Eds.), Algebraic Geometry IV, Springer-Verlag, 1993.  MR 1309681 |  Zbl 0789.20044
[28] N.Th. Varopoulos, Random walks on soluble groups, Bull. Sci. Math. 107 (1983) 337-344.  MR 732356 |  Zbl 0532.60009
[29] N.Th. Varopoulos, A potential theoritic property of soluble groups, Bull. Sci. Math. 108 (1983) 263-273.  MR 771912 |  Zbl 0546.60008
[30] N.Th. Varopoulos, Groups of superpolynomial growth, in: Igasi S. (Ed.), Harmonic Analysis (Sendai, 1990), ICM Satellite Conference Proceedings, Springer, 1991.  MR 1261441 |  Zbl 0802.43002
[31] N.Th. Varopoulos, Diffusion on Lie groups, Canad. J. Math. 46 (2) (1994) 438-448.  MR 1271225 |  Zbl 0845.22006
[32] N.Th. Varopoulos, Diffusion on Lie groups II, Canad. J. Math. 46 (5) (1994) 1073-1092.  MR 1295132 |  Zbl 0829.22013
[33] N.Th. Varopoulos, Hardy–Littlewood theory on unimodular groups, Ann. Inst. H. Poincaré Probab. Statist. 31 (4) (1995) 669-688.
Numdam |  MR 1355612 |  Zbl 0844.60006
[34] N.Th. Varopoulos, The heat kernel on Lie groups, Rev. Mat. Iberoamericana 12 (1) (1996) 147-186.  MR 1387589 |  Zbl 0853.22006
[35] N.Th. Varopoulos, L. Saloff-Coste, Th. Coulhon, Analysis and Geomety on Groups, Cambridge Tracts in Math., vol. 102, Cambridge University Press, 1993.  MR 1218884
[36] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Tracts in Math., vol. 138, Cambridge University Press, 2000.  MR 1743100 |  Zbl 0951.60002
Copyright Cellule MathDoc 2014 | Crédit | Plan du site