Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Chemin, Jean-Yves; Desjardins, Benoît; Gallagher, Isabelle; Grenier, Emmanuel
Boundary layers and time oscillations in rotating fluids. Séminaire Équations aux dérivées partielles (Polytechnique) (2001-2002), Exposé No. 23, 15 p.
Texte intégral djvu | pdf

URL stable: http://www.numdam.org/item?id=SEDP_2001-2002____A23_0

Bibliographie

[1] A. Babin, A. Mahalov, B. Nicolaenko: Global regularity of 3D rotating Navier-Stokes equations for resonant domains, Indiana Univ. Math. J. 48 (1999), no. 3, 11331176  MR 1736966 |  Zbl 0932.35160
[2] A. Babin, A. Mahalov, B. Nicolaenko: Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids, European J. Mech. B Fluids 15 (1996), no. 3, 291300.  MR 1400515 |  Zbl 0882.76096
[3] J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier: Fluids with anisotropic viscosity, Modélisation Mathématique et Analyse Numérique,34, 2000, pages 315335.
Numdam |  MR 1765662 |  Zbl 0954.76012
[4] J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier: Anisotropy and dispersion in rotating fluids, to appear, Séminaire d’Analyse non linéaire du Collège de France.  Zbl 1034.35107
[5] J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier: Ekman boundary layers in rotating fluids, to appear, ESAIM cocv.
Numdam |  MR 1932959 |  Zbl 1070.35505
[6] B. Desjardins, E. Dormy, E. Grenier: Stability of mixed Ekman-Hartmann boundary layers, Nonlinearity 12 (1999), no. 2, 181199.  MR 1677778 |  Zbl 0939.35151
[7] I. Gallagher: Applications of Schochet’s methods to parabolic equations, J. Math. Pures Appl. (9) 77 (1998), no. 10, 9891054.  Zbl 1101.35330
[8] H.P. Greenspan: The theory of rotating fluids. Reprint of the 1968 original. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge-New York, 1980.  MR 639897 |  Zbl 0182.28103
[9] E. Grenier : Oscillatory perturbations of the Navier-Stokes equations, J. Math. Pures Appl. (9) 76 (1997), no. 6, 477498.  MR 1465607 |  Zbl 0885.35090
[10] E. Grenier, N. Masmoudi: Ekman layers of rotating fluids, the case of well prepared initial data, Comm. Partial Differential Equations 22 (1997), no. $5-6$, 953975.  MR 1452174 |  Zbl 0880.35093
[11] Pedlovsky : Geophysical Fluid Dynamics, Springer-Verlag, 1979.  Zbl 0429.76001
Copyright Cellule MathDoc 2014 | Crédit | Plan du site