Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Weinstein, Alan
Deformation quantization. Séminaire Bourbaki, 36 (1993-1994), Exposé No. 789, 21 p.
Texte intégral djvu | pdf | Analyses MR 1321655 | Zbl 0854.58026 | 4 citations dans Numdam

URL stable: http://www.numdam.org/item?id=SB_1993-1994__36__389_0

Bibliographie

[BFFLS] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz A., and Sternheimer, D., Deformation theory and quantization, I and II, Ann. Phys. 111, (1977), 61-151.  MR 496157 |  Zbl 0377.53025
[Be1] Berezin, F.A., Some remarks about the associated envelope of a Lie algebra, Funct. Anal. Appl. 1, (1967), 91-102.  Zbl 0227.22020
[Be2] Berezin, F.A., Quantization, Math USSR Izv. 8 (1974), 1109-1165.  Zbl 0312.53049
[BoG] Boutet de Monvel, L., and Guillemin, V., The spectral theory of Toeplitz operators, Annals. of Math. Studies 99, Princeton University Press, Princeton, 1981.  MR 620794 |  Zbl 0469.47021
[CaGR] Cahen, M., Gutt, S., and Rawnsley, J., Quantization of Kähler Manifolds. II, Trans. Amer. Math. Soc. 337 (1993), 73-98.  MR 1179394 |  Zbl 0788.53062
[Co] Connes, A., Non-commutative differential geometry, Publ. Math. IHES 62 (1986), 41-144.
Numdam |  Zbl 0592.46056
[CoFS] Connes, A., Flato, M., and Sternheimer, D., Closed star-products and cyclic cohomology, Lett. Math. Phys. 24 (1992), 1-12.  MR 1162894 |  Zbl 0767.55005
[Cz] Czyz, J., On geometric quantization and its connections with the Maslov theory, Rep. Math. Phys. 15 (1979), 57-97.  MR 551131 |  Zbl 0419.58009
[DaP] Dazord, P., and Patissier, G., La première classe de Chern comme obstruction à la quantification asymptotique, Symplectic geometry, groupoids, and integrable systems, Séminaire sud-Rhodanien de géométrie à Berkeley (1989), P. Dazord and A. Weinstein, eds., Springer-MSRI Series (1991), 73-97.  MR 1104920 |  Zbl 0732.58020
[De] Deligne, P., Unpublished letters and lectures at IAS, Princeton, 1993.
[DeL1] De Wilde, M., and Lecomte, P., Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487-496.  MR 728644 |  Zbl 0526.58023
[DeL2] De Wilde, M., and Lecomte, P., Formal deformations of the Poisson Lie algebra of a symplectic manifold and star-products. Existence, equivalence, derivations, in M. Hazewinkel and M. Gerstenhaber, eds., Deformation Theory of Algebras and Structures and Applications, Kluwer Acad. Pub., Dordrecht (1988), 897-960.  MR 981635 |  Zbl 0685.58039
[DeL3] De Wilde, M., and Lecomte, P., Existence of star-products revisited, Note di Matematica 10, Suppl. 1 (1990), 205-216.  MR 1193524 |  Zbl 0776.53023
[Di] Dirac, P.A.M., The principles of quantum mechanics, Clarenden Press, Oxford, 1930.  MR 23198 |  Zbl 0012.18104
[Do] Donin, J., On the quantization of Poisson brackets, Advances in Math. (to appear).
arXiv |  MR 1445363 |  Zbl 0931.53040
[EW] Emmrich, C., and Weinstein, A., The differential geometry of Fedosov's quantization, Lie Theory and Geometry, in Honor of B. Kostant, J.L. Brylinski, R. Brylinski, V. Guillemin, and V. Kac, eds., Progress in Mathematics, Birkhäuser, New York (to appear).  MR 1327527 |  Zbl 0846.58031
[Fe1] Fedosov, B.V., Formal quantization, Some Topics of Modern Mathematics and their Applications to Problems of Mathematical Physics (in Russian), Moscow (1985), 129-136.  MR 933154
[Fe2] Fedosov, B.V., Index theorem in the algebra of quantum observables, Sov. Phys. Dokl. 34 (1989), 318-321.  MR 998039
[Fe3] Fedosov, B.V., A simple geometrical construction of deformation quantization, J. Diff. Geom. (to appear).  MR 1293654 |  Zbl 0812.53034
[Fe4] Fedosov, B.V., Proof of the index theorem for deformation quantization, Advances in Partial Differential Equations, Akademie Verlag, Berlin (to appear).  MR 1389013
[Fe5] Fedosov, B.V., Reduction and eigenstates in deformation quantization, Advances in Partial Differential Equations, Akademie Verlag, Berlin (to appear).  MR 1287670 |  Zbl 0809.58012
[Fe6] Fedosov, B.V., A trace density in deformation quantization, preprint, Moscow Institute of Physics and Technology, 1994.  MR 1389014
[FS] Flato, M., and Sternheimer, D., Closedness of star products and cohomologies, Lie Theory and Geometry, in Honor of B. Kostant, J.L. Brylinski, R. Brylinski, V. Guillemin, and V. Kac, eds., Progress in Mathematics, Birkhäuser, New York (to appear).  MR 1327536 |  Zbl 0853.58058
[Ge] Gerstenhaber, M., On the deformation of rings and algebras, Annals of Math., 79 (1964), 59-103.  MR 171807 |  Zbl 0123.03101
[Gu] Gutt, S., Equivalence of deformations of twisted products on a symplectic manifold, Lett. Math. Phys. 3 (1979), 495-502.  MR 555333
[KM1] Karasev M.V., and Maslov, V.P., Pseudodifferential operators and a canonical operator in general symplectic manifolds, Math. USSR Izvestia 23 (1984), 277-305.  Zbl 0554.58048
[KM2] Karasev, M.V. and Maslov, V.P., Nonlinear Poisson brackets: geometry and quantization, Translations of mathematical monographs, v. 119, Amer. Math. Soc., Providence, 1993.  MR 1214142 |  Zbl 0776.58003
[L] Lie, S., Theorie der Transformationsgruppen, (Zweiter Abschnitt, unter Mitwirkung von Prof. Dr. Friedrich Engel), Leipzig, Teubner, 1890.  JFM 23.0364.01
[LtF] Littlejohn, R.G., and Flynn, W.G., Geometric phases in the asymptotic theory of coupled wave equations, Phys. Rev. A44 (1991), 5239-5256.  MR 1133847
[Mi-Ru] Min-Oo, and Ruh, E., Comparison theorems for compact symmetric spaces, Ann. Sci. École Norm. Sup. 12 (1979), 335-353.
Numdam |  MR 559346 |  Zbl 0424.53024
[Ms] Moser, J., On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 280-296.  MR 182927 |  Zbl 0141.19407
[My] Moyal, J., Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45 (1949), 99-124.  MR 29330 |  Zbl 0031.33601
[NT1] Nest, R., and Tsygan, B., Algebraic index theorem, Comm. Math. Phys., (to appear).
Article |  MR 1350407 |  Zbl 0887.58050
[NT2] Nest, R., and Tsygan, B., Algebraic index theorem for families, Advances in Math. (to appear).  MR 1337107 |  Zbl 0837.58029
[OMY1] Omori, H., Maeda, Y., and Yoshioka, A., Weyl manifolds and deformation quantization, Advances in Math. 85 (1991), 224-255.  MR 1093007 |  Zbl 0734.58011
[OMY2] Omori, H., Maeda, Y., and Yoshioka, A., Existence of a closed star-product, Lett. Math. Phys. 26 (1992), 285-294.  MR 1205289 |  Zbl 0771.58017
[Ri] Rieffel, M.A., Deformation quantization and operator algebras, Proc. Symp. Pure Math. 51 (1990), 411-423.  MR 1077400 |  Zbl 0715.46038
[Ru] Ruh, E., Cartan connections, Proc.Symp.Pure Math. 54 (1993), 505-519.  MR 1216642 |  Zbl 0796.53037
[S] Sternberg, S., Celestial Mechanics Part II, W.A. Benjamin, New York, 1969.  Zbl 0194.56702
[Ta] Tamarkin, D.E., Topological invariants of connections on symplectic manifolds, Funct. Anal. Appl. (to appear).  MR 1375540 |  Zbl 0878.58002
[Ts] Tsujishita, T., On variation bicomplexes associated to differential equations, Osaka J. Math 19 (1982), 311-363.  MR 667492 |  Zbl 0524.58041
[V] Vey, J., Déformation du crochet de Poisson sur une variété symplectique, Comment. Math. Helv. 50 (1975), 421-454.  MR 420753 |  Zbl 0351.53029
[Wi1] Weinstein, A., Fourier integral operators, quantization, and the spectrum of a Riemannian manifold. Colloque Internationale du Centre National de la Recherche Scientifique No. 237. Géométrie Symplectique et Physique Mathématique (1976), 289-298.  MR 650990 |  Zbl 0327.58013
[Wi2] Weinstein, A., Noncommutative geometry and geometric quantization, Symplectic Geometry and Mathematical Physics: actes du colloque en l'honneur de Jean-Marie Souriau, P. Donato et al eds., Birkhäuser (1991), 446-461.  MR 1156554 |  Zbl 0756.58022
[Wy] Weyl, H., The theory of groups and quantum mechanics, Dover, New York, 1931.  Zbl 0041.56804
Copyright Cellule MathDoc 2014 | Crédit | Plan du site