Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Morgan, John W.
The rational homotopy theory of smooth, complex projective varieties. Séminaire Bourbaki, 18 (1975-1976), Exposé No. 475, 12 p.
Texte intégral djvu | pdf | Analyses MR 454967 | Zbl 0361.32009

URL stable: http://www.numdam.org/item?id=SB_1975-1976__18__69_0

Bibliographie

[1] P. Deligne, Théorie de Hodge mixte, II, Publ. Math. IHES 40 (1971), 5-57.
Numdam |  MR 498551 |  Zbl 0219.14007
[2] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan, Real homotopy theory of Kähler manifolds, Inventiones 29 (1975), 245-274;  MR 382702 |  Zbl 0312.55011
[3] A. Fröhlicher, Relations between the cohomology groups of Dolbeault and topological invariants, Proc. Nat. Acad. Sci. USA 41 (1955), 641-644.  MR 73262 |  Zbl 0065.16502
[4] W.V.D. Hodge, The Theory and Application of Harmonic Integrals", Cambridge University Press, Cambridge, G.B., 2nd edition 1959.  Zbl 0048.15702
[5] J. Morgan, The homotopy theory of open, smooth, varieties, (to appear)
[6] D. Sullivan, Infinitesimal calculations in topology, (to appear) Ann. of Math.  MR 2131009
[7] A. Weil, " L'Introduction à l'Etude des Variétés kählerienne", Hermann, Paris, 1958.
[8] R. Wells, Jr., " Differential Analysis on Complex Manifolds", Printice-Hall, Englewod Cliffs, N.J., 1973.  MR 515872 |  Zbl 0262.32005
[9] A. Bousfield and D. Kan, " Homotopy limits, completions, and localizations", Lecture Notes in Mathematics 304, Berlin-Heidelberg-New York, Springer, 1972.  MR 365573 |  Zbl 0259.55004
Copyright Cellule MathDoc 2014 | Crédit | Plan du site