Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Secchi, Paolo
Existence theorems for compressible viscous fluids having zero shear viscosity. Rendiconti del Seminario Matematico della Università di Padova, 71 (1984), p. 73-102
Texte intégral djvu | pdf | Analyses MR 769429 | Zbl 0563.76067 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=RSMUP_1984__71__73_0

Bibliographie

[1] S. Agmon - A. Douglis - L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Il, Comm. Pure Appl. Math., 17 (1964), pp. 35-92.  MR 162050 |  Zbl 0123.28706
[2] H. Beirão Da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Sc. Norm. Sup. Pisa, 8 (1981), pp. 317-351.
Numdam |  MR 623940 |  Zbl 0477.76059
[3] H. Beirão Da Veiga - A. Valli, On the Euler equations for nonhomogeneous fluids (I), preprint Univ. Trento.
[4] J.P. Bourguignon - H. Brezis, Remarks on the Euler equations, J. Funct. Anal., 15 (1974), pp. 341-363.  MR 344713 |  Zbl 0279.58005
[5] S. Chapman - T.G. Cowling, The mathematical theory of non-uniform gases, third ed., Cambridge, 1970.  Zbl 0049.26102
[6] C. Foias - R. Temam, Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Sc. Norm. Sup. Pisa, 5 (1978), pp. 29-63.
Numdam |  MR 481645 |  Zbl 0384.35047
[7] N. Itaya, On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids, Kodai Math. Sem. Rep., 23 (1971), 60-120.
Article |  MR 283426 |  Zbl 0219.76080
[8] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, Corso CIME on « Hyperbolicity » (1976), pp. 127-191.  Zbl 0456.35052
[9] O.A. Ladyzenskaja - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Amer. Math. Soc., Transl. Math. Mono., 23 (1968) (translated from Russian).  MR 241821 |  Zbl 0174.15403
[10] J.L. Lions - E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968.  MR 247243 |  Zbl 0165.10801
[11] J.L. Lions E. Magenes, Problèmes aux limites non homogènes et applications, vol. 2, Dunod, Paris, 1968.  MR 247244 |  Zbl 0165.10801
[12] A. Matsumura - T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), pp. 67-104.
Article |  MR 564670 |  Zbl 0429.76040
[13] J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Boll. Soc. Math. France, 90 (1962), pp. 487-497.
Numdam |  MR 149094 |  Zbl 0113.19405
[14] L. Rosenhead (and others), A discussion on the first and the second viscosities of fluids, Proc. Roy. Soc. Lond., Ser. A, 226 (1954), pp. 1-69.  MR 64546
[15] J. Serrin, Mathematical principles of classical fluid mechanics, Handbuch der Physik, vol. VIII/1, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.  MR 108116
[16] J. Serrin, On the uniqueness of compressible fluid motions, Arch. Rat. Mech. Anal., 3 (1959), pp. 271-288.  MR 106646 |  Zbl 0089.19103
[17] V.A. Solonnikov, Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid, J. Soviet Math., 14 (1980), pp. 1120-1133 (previously in Zap-Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 56 (1976), pp. 128-142 [Russian]).  MR 481666 |  Zbl 0451.35092
[18] V.A. Solonnikov - A.V. Kazhikhov, Existence theorems for the equations of motion of a compressible viscous fluid, Ann. Rev. Fluid Mech., 13 (1981), pp. 79-95.  Zbl 0492.76074
[19] A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS, Kyoto Univ., 13 (1977), pp. 193-253.
Article |  Zbl 0366.35070
[20] A. Valli, An existence theorem for compressible viscous fluids, Ann. Mat. Pura App., 130 (1982), pp. 197-213.  MR 663971 |  Zbl 0599.76081
[21] A. Valli, A correction to the paper «An existence theorem for compressible viscous fluids », Ann. Mat. Pura Appl., 132 (1982), pp. 399-400.  MR 696052 |  Zbl 0599.76082
[22] A. Valli, Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds, Boll. Un. Mat. It., Anal. Funz. Appl., 18-C (1981), pp. 317-325.  MR 631585 |  Zbl 0484.76075
[23] A.I. Yol'pert - S.I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sbornik, 16 (1972), pp. 517-544 (previously in Mat. Sbornik, 87 (1972), pp. 504-528 [Russian]).  MR 390528 |  Zbl 0251.35064
Copyright Cellule MathDoc 2014 | Crédit | Plan du site