Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Getachew, Teodros; Kostreva, Michael M.
A dimension-reduction algorithm for multi-stage decision problems with returns in a partially ordered set. RAIRO - Operations Research - Recherche Opérationnelle, 36 no. 3 (2002), p. 175-190
Texte intégral djvu | pdf | Analyses MR 1988275 | Zbl 1062.90032
Mots clés: multi-criteria optimization, time-variant networks, dimension reduction

URL stable: http://www.numdam.org/item?id=RO_2002__36_3_175_0

Voir cet article sur le site de l'éditeur

Résumé

In this paper a two-stage algorithm for finding non- dominated subsets of partially ordered sets is established. A connection is then made with dimension reduction in time-dependent dynamic programming via the notion of a bounding label, a function that bounds the state-transition cost functions. In this context, the computational burden is partitioned between a time-independent dynamic programming step carried out on the bounding label and a direct evaluation carried out on a subset of “real” valued decisions. A computational application to time-dependent fuzzy dynamic programming is presented.

Bibliographie

[1] R.E. Bellman, On a Routing Problem. Quarterly Appl. Math. 16 (1958) 87-90.  MR 102435 |  Zbl 0081.14403
[2] R.E. Bellman and L.A. Zadeh, Decision-Making in a Fuzzy Environment. Management Sci. 17 (1970) B-141-B-164.  MR 301613 |  Zbl 0224.90032
[3] T.A. Brown and R.E. Strauch, Dynamic Programming in Multiplicative Lattices. J. Math. Anal. Appl. 12 (1965) 364-370.  MR 184776 |  Zbl 0132.40303
[4] K.L. Cooke and E. Halsey, The Shortest Route through a Network with Time-Dependent Internodal Transit Times. J. Math. Anal. Appl. 14 (1966) 493-498.  MR 192921 |  Zbl 0173.47601
[5] H.W. Corley and I.D. Moon, Shortest Paths in Networks with Vector Weights. J. Opt. Theory Appl. 46 (1985) 79-86.  MR 792595 |  Zbl 0542.90099
[6] H.G. Daellenbach and C.A. DeKluyver, Note on Multiple Objective Dynamic Programming. J. Oper. Res. Soc. 31 (1980) 591-594.  Zbl 0434.90086
[7] E.W. Djikstra, A Note on Two Problems in Connection with Graphs. Numer. Math. 1 (1959) 269-271.  MR 107609 |  Zbl 0092.16002
[8] S.E. Dreyfus, An Appraisal of Some Shortest Path Algorithms. Oper. Res. 17 (1969) 395-412.  Zbl 0172.44202
[9] S.E. ElMaghraby, The Concept of “State” in Discrete Dynamic Programming. J. Math. Anal. Appl. 29 (1970) 523-557.  Zbl 0191.49201
[10] T. Getachew, M. Kostreva and L. Lancaster, A Generalization of Dynamic Programming for Pareto Optimization in Dynamic Network. RAIRO: Oper. Res. 34 (2000) 27-47.
Numdam |  MR 1747707 |  Zbl 0963.90055
[11] J. Halpern, Shortest Route with Time-Dependent Length of Edges and Limited Delay Possibilities in Nodes. Z. Oper. Res. 21 (1977) 117-124.  MR 484343 |  Zbl 0366.90116
[12] M.I. Henig, The Principle of Optimality in Dynamic Programming with Returns in Partially Ordered Sets. Math. Oper. Res. 10 (1985) 462-470.  MR 798391 |  Zbl 0582.90104
[13] D.E. Kaufmann and R.L. Smith, Minimum Travel Time Paths in Dynamic Networks with Application to Intelligent Vehicle-Highway Systems. University of Michigan, Transportation Research Institute, Ann Arbor, Michigan, USA, IVHS Technical Report 90-11 (1990).
[14] M.M. Kostreva and M.M. Wiecek, Time Dependency in Multiple Objective Dynamic Programming. J Math. Anal. Appl. 173 (1993) 289-308.  MR 1205924 |  Zbl 0805.90113
[15] A. Orda and R. Rom, Shortest-Path an Minimum-Delay Algorithms in Networks with Time-Dependent Edge-Length. J. Assoc. Comp. Mach. 37 (1990) 607-625.  MR 1072271 |  Zbl 0699.68074
[16] J. Kacprzyk and A.O. Esogbue, Fuzzy Dynamic Programming: Main Developments and Applications. Fuzyy Sets Sys. 81 (1996) 31-45.  MR 1402274 |  Zbl 0879.90185
[17] M.L. Hussein and M.A. Abo-Sinna, A Fuzzy Dynamic Approach to the Multicriterion Resource Allocation Problem. Fuzzy Sets Sys. 69 (1995) 115-124.  MR 1317880
Copyright Cellule MathDoc 2014 | Crédit | Plan du site