Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Thiriez, Hervé
The set covering problem : a group theoretic approach. Revue française d'automatique, d'informatique et de recherche opérationnelle. Recherche opérationnelle, 5 no. 3 (1971), p. 83-103
Texte intégral djvu | pdf | Analyses Zbl 0266.90039 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=RO_1971__5_3_83_0

Bibliographie

[1] J. P. ARABEYRE, J. FEARNLEY, F. STEIGER and W. TEATHER, «The airline crew scheduling problem : a survey», Transportation Science, 3, n° 2, May 1969.
[2] P. BERTHIER, PHONG TRUAN NGHIEM et B. ROY, «Programmes linéaires en nombres entiers et procédures S.E.P.», METRA, vol. 4, n° 3, 1965.
[3] E. BALAS, « An additive algorithm for solving linear programs with 0-1 variables »,Operations Research, 13, n° 4, 1965.  MR 183535 |  Zbl 0133.42701
[4] R. S. GARFINKEL and G. L. NEMHAUSER, «The set partitioning problem : set covering with equality constraints», Operations Research, 17, pp. 848-856, 1969.  Zbl 0184.23101
[5] A. M. GEOFFRION, An Improved Implicit Enumeration Approach for Integer Programming, The Rand Corporation, RM-5644-PR, June 1968.  Zbl 0174.20801
[6] F. GLOVER. A Multiplan Dual Algorithm for the 0-1 Integer Programming Problem. Case Institute of Technology, Management Science Report n° 25, 1965.
[7] R. E. GOMORY, « On the relation between integer and noninteger solutions to linear programs », Proc. Nat. Acad. Sci., 53, pp. 260-295, 1965.  MR 182454 |  Zbl 0132.13702
[8] R. E. GOMORY, « An Algorithm for Integer Solutions to Linear Programs », pp. 269-302 in Recent Advances in Mathematical Programming, Graves, R. L., and Wolfe, P., (Eds.), McGraw-Hill, 1963.  MR 174390 |  Zbl 0235.90038
[9] W. C. HEALY Jr., « Multiple choice programming », Operations Research, 12, pp. 122-138, 1964.  MR 163765 |  Zbl 0123.37205
[10] R. W. HOUSE, L. D. NELSON and T. RADO, « Computer Studies of a Certain Class of Linear Integer Problems », Recent Advances in Optimization Techniques, Lavi, A., and Vogl, T., (Eds.), Wiley, 1966.  Zbl 0146.41007
[11] A. H. LAND and A. G. DOIG, « An automatic method of solving discrete linear programming problems », Econometrica, 28, pp. 497-520, 1960.  MR 115825 |  Zbl 0101.37004
[12] E. L. LAWLER and M. D. BELL, « A method for solving discrete optimization problems », Operations Research, 14, n° 6, 1966.
[13] G. D. MOSTOW, J. H. SAMPSON and J. P. MEYER, Fundamental Structures of Algebra, McGraw-Hill, 1963.  MR 154830 |  Zbl 0107.01103
[14] J. F. PIERCE, « Application of combinatorial programming to a class of all-zero-one integer programming problems », Management Science, 15, pp. 191-209, 1968.  MR 241111
[15] R. ROTH, « Computer solutions to minimum cover problems », Operations Research, 17, pp. 455-466, 1969.  Zbl 0174.20706
[16] B. ROY et R. BENAYOUN, « Programmes linéaires en variables bivalentes et continues sur un graphe (Programme Poligami) », METRA, vol. 6, n° 4, 1967.
[17] B. ROY, Algèbre Moderne et Théorie des Graphes, Dunod éd., 1970.  MR 260413
[18] B. ROY, An Algorithm for a General Constrained Set Covering Problem, Computing and Graph Theory (To be published), Academic Press, New York.  MR 340061 |  Zbl 0255.05006
[19] J. F. SHAPIRO, « Dynamic programming algorithms for the integer programming problem-I : the integer programming problem viewed as a knapsack type problem »,Operations Research, 16, 1968.  MR 232596 |  Zbl 0159.48803
[20] J. F. SHAPIRO, « Group theoretic algorithms for the integer programming problem-II : extension to a general algorithm », Operations Research, 16, n° 5, 1968.  MR 237177 |  Zbl 0169.22401
[21] H. M. THIRIEZ, Implicit Enumeration Applied to the Crew Scheduling Problem, Dept. of Aeronautics, M.I.T., 1968.
[22] H. M. THIRIEZ, Airline Crew Scheduling : a Group Theoretic Approach, Ph. D. Thesis, M.I.T. FTL-R69-1, 1969.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site