Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Gobet, Emmanuel
Euler schemes and half-space approximation for the simulation of diffusion in a domain. ESAIM: Probability and Statistics, 5 (2001), p. 261-297
Texte intégral djvu | pdf | Analyses MR 1889160 | Zbl 0998.60081
Class. Math.: 35K20, 60-08, 60J60, 65Cxx
Mots clés: killed diffusion, reflected diffusion, discretization schemes, rates of convergence, weak approximation, boundary value problems for parabolic PDE

URL stable: http://www.numdam.org/item?id=PS_2001__5__261_0

Résumé

This paper is concerned with the problem of simulation of $(X_t)_{0\le t\le T}$, the solution of a stochastic differential equation constrained by some boundary conditions in a smooth domain $D$: namely, we consider the case where the boundary $\partial D$ is killing, or where it is instantaneously reflecting in an oblique direction. Given $N$ discretization times equally spaced on the interval $[0,T]$, we propose new discretization schemes: they are fully implementable and provide a weak error of order $N^{-1}$ under some conditions. The construction of these schemes is based on a natural principle of local approximation of the domain into a half space, for which efficient simulations are available.

Bibliographie

[1] P. Baldi, Exact asymptotics for the probability of exit from a domain and applications to simulation. Ann. Probab. 23 (1995) 1644-1670.
Article |  MR 1379162 |  Zbl 0856.60033
[2] P. Baldi, L. Caramellino and M.G. Iovino, Pricing complex barrier options with general features using sharp large deviation estimates, edited by Niederreiter, Harald et al., Monte-Carlo and quasi-Monte-Carlo methods 1998, in Proc. of a conference held at the Claremont Graduate University. Claremont, CA, USA, June 22-26, 1998. Springer, Berlin (2000) 149-162.  MR 1849848 |  Zbl 0937.91062
[3] V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations: I. Convergence rate of the distribution function. Probab. Theory Related Fields 104-1 (1996) 43-60.  MR 1367666 |  Zbl 0838.60051
[4] M. Bossy, E. Gobet and D. Talay, Computation of the invariant law of a reflected diffusion process (in preparation).
[5] P. Cattiaux, Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 67-112.
Numdam |  MR 838373 |  Zbl 0595.60059
[6] P. Cattiaux, Régularité au bord pour les densités et les densités conditionnelles d’une diffusion réfléchie hypoelliptique. Stochastics 20 (1987) 309-340.  Zbl 0637.60092
[7] C. Constantini, B. Pacchiarotti and F. Sartoretto, Numerical approximation for functionnals of reflecting diffusion processes. SIAM J. Appl. Math. 58 (1998) 73-102.  MR 1610029 |  Zbl 0913.60031
[8] O. Faugeras, F. Clément, R. Deriche, R. Keriven, T. Papadopoulo, J. Roberts, T. Viéville, F. Devernay, J. Gomes, G. Hermosillo, P. Kornprobst and D. Lingrand, The inverse EEG and MEG problems: The adjoint state approach. I. The continuous case. Rapport de recherche INRIA No. 3673 (1999).
[9] M. Freidlin, Functional integration and partial differential equations. Ann. of Math. Stud. Princeton University Press (1985).  MR 833742 |  Zbl 0568.60057
[10] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer Verlag (1977).  MR 473443 |  Zbl 0361.35003
[11] E. Gobet, Schémas d’Euler pour diffusion tuée. Application aux options barrière, Ph.D. Thesis. Université Denis Diderot Paris 7 (1998).
[12] E. Gobet, Euler schemes for the weak approximation of killed diffusion. Stochastic Process. Appl. 87 (2000) 167-197.  MR 1757112 |  Zbl 1045.60082
[13] E. Gobet, Efficient schemes for the weak approximation of reflected diffusions. Monte Carlo Methods Appl. 7 (2001) 193-202. Monte Carlo and probabilistic methods for partial differential equations. Monte Carlo (2000).  MR 1828209 |  Zbl 0986.65002
[14] E. Hausenblas, A numerical scheme using excursion theory for simulating stochastic differential equations with reflection and local time at a boundary. Monte Carlo Methods Appl. 6 (2000) 81-103.  MR 1773371 |  Zbl 0960.65009
[15] S. Kanagawa and Y. Saisho, Strong approximation of reflecting Brownian motion using penalty method and its application to computer simulation. Monte Carlo Methods Appl. 6 (2000) 105-114.  MR 1773372 |  Zbl 0963.65005
[16] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus I, edited by K. Itô, Stochastic Analysis, in Proc. Taniguchi Internatl. Symp. Katata and Kyoto 1982. Kinokuniya, Tokyo (1984) 271-306.  MR 780762 |  Zbl 0546.60056
[17] O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasi-linear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968).  Zbl 0174.15403
[18] D. Lépingle, Un schéma d’Euler pour équations différentielles stochastiques réfléchies. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 601-605.  Zbl 0771.60046
[19] D. Lépingle, Euler scheme for reflected stochastic differential equations. Math. Comput. Simulation 38 (1995) 119-126.  MR 1341164 |  Zbl 0824.60062
[20] P.L. Lions and A.S. Sznitman, Stochastic differential equations with reflecting boundary conditions. Comm. Pure Appl. Math. 37 (1984) 511-537.  MR 745330 |  Zbl 0598.60060
[21] Y. Liu, Numerical approaches to reflected diffusion processes. Technical Report (1993).
[22] J.L. Menaldi, Stochastic variational inequality for reflected diffusion. Indiana Univ. Math. J. 32 (1983) 733-744.  MR 711864 |  Zbl 0492.60057
[23] G.N. Milshtein, Application of the numerical integration of stochastic equations for the solution of boundary value problems with Neumann boundary conditions. Theory Probab. Appl. 41 (1996) 170-177.  MR 1404908 |  Zbl 0888.60050
[24] C. Miranda, Partial differential equations of elliptic type. Springer, New York (1970).  MR 284700 |  Zbl 0198.14101
[25] E. Pardoux and R.J. Williams, Symmetric reflected diffusions. Ann. Inst. H. Poincaré Probab. Statist. 30 (1994) 13-62.
Numdam |  MR 1262891 |  Zbl 0794.60078
[26] R. Pettersson, Approximations for stochastic differential equations with reflecting convex boundaries. Stochastic Process. Appl. 59 (1995) 295-308.  MR 1357657 |  Zbl 0841.60042
[27] R. Pettersson, Penalization schemes for reflecting stochastic differential equations. Bernoulli 3 (1997) 403-414.
Article |  MR 1483695 |  Zbl 0899.60053
[28] D. Revuz and M. Yor, Continuous martingales and Brownian motion, 2nd Ed. Springer, Berlin, Grundlehren Math. Wiss. 293 (1994).  MR 1303781 |  Zbl 0804.60001
[29] Y. Saisho, Stochastic differential equations for multi-dimensional domain with reflecting boundary. Probab. Theory Related Fields 74 (1987) 455-477.  MR 873889 |  Zbl 0591.60049
[30] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. Roy. Soc. London Ser. A 264 (1969) 413-496.  MR 282058 |  Zbl 0181.38003
[31] L. Slomiński, On approximation of solutions of multidimensional SDEs with reflecting boundary conditions. Stochastic Process. Appl. 50 (1994) 197-219.  MR 1273770 |  Zbl 0799.60055
[32] D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8-4 (1990) 94-120.  MR 1091544 |  Zbl 0718.60058
[33] R.J. Williams, Semimartingale reflecting Brownian motions in the orthant, Stochastic networks. Springer, New York (1995) 125-137.  MR 1381009 |  Zbl 0827.60031
Copyright Cellule MathDoc 2014 | Crédit | Plan du site