Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matičres de ce fascicule | Article précédent | Article suivant
Zaitsev, A. Yu.
Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments. ESAIM : Probability and Statistics, 2 (1998), p. 41-108
Texte intégral djvu | pdf | Analyses MR 1616527 | Zbl 0897.60033 | 3 citations dans Numdam

URL stable: http://www.numdam.org/item?id=PS_1998__2__41_0

Bibliographie

BÁRTFAI, P. ( 1966), Die Bestiminung der zu einem wiederkehrenden Prozess gehörenden Verteilungfunktion aus den mit Fehlern behafteten Daten einer einzigen Realisation, Studia Sci. Math. Hungar. 1 161-168.  MR 215377 |  Zbl 0156.39102
BERGER, E. ( 1982), Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsveetoren, Dissertation, Universität Göttingen.
BERKES, I., PHILIPP, W. ( 1979), Approximation theorems for independent and weakly dependent random vectors, Ann. Probab. 7 29-54.
Article |  MR 515811 |  Zbl 0392.60024
BOROVKOV, A. A. ( 1973), On the rate of convergence in the invariance principle, Theor. Probab. Appl. 18 207-225.  MR 324738 |  Zbl 0323.60031
CSÖRGŐ, M., RÉVÉSZ, P. ( 1975), A new method to prove Strassen type laws of invariance principle. I; II, Z. Wahrscheinlichkeitstheor. verw. Geb. 31 255-259; 261-269.  MR 375411 |  Zbl 0283.60024
CSÖRGŐ, M., RÉVÉSZ, P. ( 1981), Strong approximations in probability and statistics, Academic Press.  MR 666546 |  Zbl 0539.60029
CSÖRGŐ, S., HALL, P. ( 1984), The Komlós-Major-Tusnády approximations and their applications, Austral J. Statist. 26 189-218.  MR 766619 |  Zbl 0557.60028
DOOB, J. L. ( 1953), Stochastic processes, Wiley.  MR 58896 |  Zbl 0053.26802
ElNMAHL, U. ( 1986), A refinement of the KMT-inequality for partial sumstrong approximation, Techn. Rep. Ser. Lab. Res. Statist. No. 88. Carleton University, University of Ottawa.
ElNMAHL, U. ( 1987a), A useful estimate in the multidimensional invariance principle, Probab. Theor. Rel Fields 76 81-101.  MR 899446 |  Zbl 0608.60029
ElNMAHL, U. ( 1987b), Strong invariance principles for partial sums of independent random vectors, Ann. Probab. 15 1419-1440.
Article |  MR 905340 |  Zbl 0637.60041
ElNMAHL, U. ( 1989), Extensions of results of Komlós, Major and Tusnády to the multivariate case, J. Multivar. Anal. 28 20-68.  MR 996984 |  Zbl 0676.60038
GÖTZE, F., ZAITSEV, A. YU. ( 1997), Multidimensional Hungarian construction for almost Gaussian smooth distributions, Preprint 97- 071 SFB 343, Universität Bielefeld.
KOMLÓS, J., MAJOR, P., TUSNÁDY, G. ( 1975; 1976), An approximation of partial sums of independent RV'-s and the sample DF. I; II, Z. Wahrscheinlichkeitstheor. verw. Geb. 32 111-131; 34 34-58.  MR 375412 |  Zbl 0308.60029
MASSART, P. ( 1989), Strong approximation for multivariate empirical and related processes, via KMT construction, Ann. Probab. 17 266-291.
Article |  MR 972785 |  Zbl 0675.60026
PHILIPP, W. ( 1979), Almost sure invariance principles for sums of B-valued random variables, Lect. Notes in Math. 709 171-193.  MR 537701 |  Zbl 0418.60013
PROKHOROV, YU. V. ( 1956), Convergence of random processes and limit theorem of probability theory, Theor. Probab. Appl. 1 157-214.  Zbl 0075.29001
ROSENBLATT, M. ( 1952), Remarks on a multivariate transformation, Ann. Math. Statist. 23 470-472.
Article |  MR 49525 |  Zbl 0047.13104
SAKHANENKO, A. I. ( 1984), Rate of convergence in the invariance principles for variables with exponential moments that are not identically distributed, In: Trudy Inst. Mat. SO AN SSSR, Nauka, Novosibirsk, 3 4-49 (in Russian).  MR 749757 |  Zbl 0541.60024
SAZONOV, V. V. ( 1981), Normal approximation - some recent advances, Lect. Notes in Math. 879.  MR 643968 |  Zbl 0462.60006
SHAO, QI-MAN ( 1995), Strong approximation theorems for independent random variables and their applications, J. Multivar. Anal. 52 107-130.  MR 1325373 |  Zbl 0817.60027
SKOROKHOD, A. V. ( 1961), Studies in the theory of random processes, Univ. Kiev Press (in Russian, Engl. transl. ( 1965), Addison-Wesley).  MR 185620 |  Zbl 0146.37701
STRASSEN, V. ( 1964), An invariance principle for the law of iterated logarithm, Z. Wahrscheinlichkeitstheor. verw. Geb. 3 211-226.  MR 175194 |  Zbl 0132.12903
YURINSKII, V. V. ( 1978), On the error of the Gaussian approximation to the probability of a ball, Unpublished manuscript.
ZAITSEV, A. YU. ( 1986), Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments, Theor. Probab. Appl. 31 203-220.  Zbl 0659.60042
ZAITSEV, A. YU. ( 1987), On the Gaussian approximation of convolutions under multi-dimensional analogues of S. N. Bernstein inequality conditions, Probab. Theor. Rel. Fields 74 535-566.  MR 876255 |  Zbl 0612.60031
ZAITSEV, A. YU. ( 1988), On the connection between two classes of probability distributions, In: Rings and modulus. Limit theorems of probability theory. Vol. 2, Leningrad University Press, 153-158 (in Russian).  MR 974144
ZAITSEV, A. YU. ( 1995a), Multidimensional version of the Hungarian construction, In : Vtoraya Vserossiiskaya shkola-kollokvium po stochasticheskim metodam. Ioshkar-Ola, 1995. Tezisy dokladov, TVP, Moskva, 54-55 (in Russian).
ZAITSEV, A. YU. ( 1995b), Multidimensional version of the results of Komlós, Major and Tusnády for vectors with finite exponential moments, Preprint 95 - 055 SFB 343, Universität Bielefeld.
ZAITSEV, A. YU. ( 1996a), An improvement of U. Einmahl estimate in the multidimensional invariance principle, In: Probability Theory and Mathematical Statistics. Proceedings of the Euler Institute Seminars Deducated to the Memory of Kolmogorov. I. A. Ibragimov and A. Yu. Zaitsev eds. Gordon and Breach, 109-116.  MR 1661697 |  Zbl 0873.60020
ZAITSEV, A. YU. ( 1996b), Estimates for quantiles of smooth conditional distributions and multidimensional invariance principle, Siberian Math. J. 37 807-831 (in Russian).  MR 1643370 |  Zbl 0881.60034
ZAITSEV, A. YU. ( 1997), Multidimensional variant of the Komlós, Major and Tusnády results for vectors with finite exponent ial moments, Dokl. Math. 56 935-937.  Zbl 0971.60033
Copyright Cellule MathDoc 2014 | Crédit | Plan du site