Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Voevodsky, Vladimir
Motivic cohomology with Z/2-coefficients. Publications Mathématiques de l'IHÉS, 98 (2003), p. 59-104
Texte intégral djvu | pdf | Analyses Zbl 1057.14028 | 4 citations dans Numdam

URL stable: http://www.numdam.org/item?id=PMIHES_2003__98__59_0

Voir cet article sur le site de l'éditeur

Bibliographie

1. H. Bass and J. Tate, The Milnor ring of a global field, In K-theory II, Lecture Notes in Math. 342 (1973), pp. 349–446, Springer.  MR 442061 |  Zbl 0299.12013
2. A. Beilinson, Height pairing between algebraic cycles, In K-theory, Arithmetic and Geometry, Lecture Notes in Math. 1289 (1987), pp. 1–26, Springer.  MR 923131 |  Zbl 0651.14002
3. S. Bloch, Lectures on algebraic cycles, Duke Univ. Press, 1980.  MR 558224 |  Zbl 0436.14003
4. S. Bloch and S. Lichtenbaum, A spectral sequence for motivic cohomology, www.math.uiuc.edu/K-theory/062, 1994.
5. S. Borghesi, Algebraic Morava K-theories, Invent. Math., 151 (2) (2003), 381413.  MR 1953263 |  Zbl 1030.55003
6. E. M. Friedlander and A. Suslin, The spectral sequence relating algebraic K-theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4), 35 (6) (2002), 773875.
Numdam |  MR 1949356 |  Zbl 1047.14011
7. T. Geisser and M. Levine, The K-theory of fields in characteristic p, Invent. Math., 139 (3) (2000), 459493.  MR 1738056 |  Zbl 0957.19003
8. T. Geisser and M. Levine, The Bloch-Kato conjecture and a theorem of Suslin–Voevodsky, J. Reine Angew. Math., 530 (2001), 55103.  MR 1807268 |  Zbl 1023.14003
9. R. Hartshorne, Algebraic Geometry, Heidelberg: Springer, 1971.  MR 463157 |  Zbl 0367.14001
10. J.-P. Jouanolou, Une suite exacte de Mayer-Vietoris en K-theorie algebrique, Lecture Notes in Math. 341 (1973), pp. 293–317.  MR 409476 |  Zbl 0291.14006
11. B. Kahn, La conjecture de Milnor (d’après V. Voevodsky), Astérisque, (245): Exp. No. 834, 5 (1997), 379–418. Séminaire Bourbaki, Vol. 1996/97.
Numdam |  Zbl 0916.19001
12. N. Karpenko, Characterization of minimal Pfister neighbors via Rost projectors, J. Pure Appl. Algebra, 160 (2001), 195227.  MR 1836000 |  Zbl 0998.11016
13. K. Kato, A generalization of local class field theory by using K-groups, II, J. Fac. Sci., Univ Tokyo, 27 (1980), 603683.  MR 603953 |  Zbl 0463.12006
14. T. Y. Lam, The algebraic theory of quadratic forms, Reading, MA: The Benjamin/Cummings Publ., 1973.  MR 396410 |  Zbl 0437.10006
15. S. Lichtenbaum, Values of zeta-functions at non-negative integers, In Number theory, Lecture Notes in Math. 1068 (1983), pp. 127–138, Springer.  MR 756089 |  Zbl 0591.14014
16. H. R. Margolis, Spectra and Steenrod algebra, North-Holland, 1983.  MR 738973 |  Zbl 0552.55002
17. V. Voevodsky, C. Mazza and C. Weibel, Lectures on motivic cohomology, I, www.math.uiuc.edu/K-theory/486, 2002.
18. A. Merkurjev, On the norm residue symbol of degree 2, Sov. Math. Dokl., (1981), 546551.  Zbl 0496.16020
19. A. Merkurjev and A. Suslin, K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR Izvestiya, 21 (1983), 307340.  Zbl 0525.18008
20. A. Merkurjev and A. Suslin, The norm residue homomorphism of degree three, Math. USSR Izvestiya, 36(2) (1991), 349367.  MR 1062517 |  Zbl 0716.19002
21. J. Milnor, Algebraic K-theory and quadratic forms, Invent. Math., 9 (1970), 318344.  MR 260844 |  Zbl 0199.55501
22. J. Milnor, Introduction to Algebraic K-theory, Princeton, N.J.: Princeton Univ. Press, 1971.  MR 349811 |  Zbl 0237.18005
23. F. Morel and V. Voevodsky, A 1- homotopy theory of schemes, Publ. Math. IHES, (90) (1999), 45143.
Numdam |  MR 1813224 |  Zbl 0983.14007
24. Y. Nisnevich, The completely decomposed topology on schemes and associated descent spectral sequences in algebraic K-theory, In Algebraic K-theory: connections with geometry and topology, pp. 241–342, Dordrecht: Kluwer Acad. Publ., 1989.  MR 1045853 |  Zbl 0715.14009
25. D. Orlov, A. Vishik and V. Voevodsky, An exact sequence for Milnor’s K-theory with applications to quadratic forms, www.math.uiuc.edu/K-theory/0454, 2000.
arXiv |  Zbl 1124.14017
26. D. C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Ann. of Math. Studies 128. Princeton, 1992.  MR 1192553 |  Zbl 0774.55001
27. M. Rost, Hilbert 90 for K3 for degree-two extensions, www.math.ohio-state.edu/∼rost/K3-86.html, 1986.
28. M. Rost, On the spinor norm and A0(X,K1) for quadrics, www.math.ohio-state.edu/∼rost/spinor.html, 1988.
29. M. Rost, Some new results on the Chowgroups of quadrics, www.math.ohio-state.edu/∼rost/chowqudr.html, 1990.
30. M. Rost, The motive of a Pfister form, www.math.ohio-state.edu/∼rost/motive.html, 1998.
31. A. Suslin, Algebraic K-theory and the norm residue homomorphism, J. Soviet Math., 30 (1985), 25562611.  MR 770942 |  Zbl 0566.12016
32. A. Suslin, Higher Chow groups and etale cohomology, In Cycles, transfers and motivic homology theories, pp. 239–254, Princeton: Princeton Univ. Press, 2000.  MR 1764203 |  Zbl 1019.14001
33. A. Suslin and V. Voevodsky, Bloch-Kato conjecture and motivic cohomology with finite coefficients, In The arithmetic and geometry of algebraic cycles, pp. 117–189, Kluwer, 2000.  MR 1744945 |  Zbl 1005.19001
34. J. Tate, Relations between K2 and Galois cohomology, Invent. Math., 36 (1976), 257274.  MR 429837 |  Zbl 0359.12011
35. V. Voevodsky, Bloch-Kato conjecture for Z/2-coefficients and algebraic Morava K-theories, www.math.uiuc.edu/K-theory/76, 1995.
36. V. Voevodsky, The Milnor Conjecture, www.math.uiuc.edu/K-theory/170, 1996.
37. V. Voevodsky, The A 1-homotopy theory, In Proceedings of the international congress of mathematicians, 1 (1998), pp. 579–604, Berlin.  MR 1648048 |  Zbl 0907.19002
38. V. Voevodsky, Cohomological theory of presheaves with transfers, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 87–137, Princeton: Princeton Univ. Press, 2000.  MR 1764200 |  Zbl 1019.14010
39. V. Voevodsky, Triangulated categories of motives over a field, In Cycles, transfers and motivic homology theories, Annals of Math Studies, pp. 188–238, Princeton: Princeton Univ. Press, 2000.  MR 1764202 |  Zbl 1019.14009
40. V. Voevodsky, Lectures on motivic cohomology 2000/2001 (written by Pierre Deligne), www.math.uiuc.edu/ K-theory /527, 2000/2001.
41. V. Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not., (7) (2002), 351355.  MR 1883180 |  Zbl 1057.14026
42. V. Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. IHES (this volume), 2003.
Numdam |  MR 2031198 |  Zbl 1057.14027
43. V. Voevodsky, E. M. Friedlander and A. Suslin, Cycles, transfers and motivic homology theories, Princeton: Princeton University Press, 2000.  MR 1764197 |  Zbl 1021.14006
Copyright Cellule MathDoc 2014 | Crédit | Plan du site