Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule
Sevennec, Bruno
Géométrie des systèmes hyperboliques de lois de conservation. Mémoires de la Société Mathématique de France, Sér. 2, 56 (1994), p. 1-125
Texte intégral djvu | pdf | Analyses MR 95g:35123 | Zbl 0807.35090 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=MSMF_1994_2_56__1_0

Bibliographie

[A1] V.I. Arnold, Méthodes mathématiques de la mécanique classique, Mir 1976.  MR 57 #14033a |  Zbl 0385.70001
[A2] V.I. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir 1978.  Zbl 0455.34001
[Ba] C. Bardos, Apparition éventuelle de singularités dans les problèmes d'évolution non linéaires, séminaire Bourbaki No 555 (1980).
Numdam |  Zbl 0455.35028
[Bla] W. Blaschke, Vorlesungen über Differentialgeometrie ; II, Affine Differentialgeometrie, Berlin, J. Springer, 1923, cf. aussi Gesammelte Werke, Band IV (Burau, Chern et al editors), Thales, Essen, 1985.
[Bo1] G. Boillat, Chocs caractéristiques, C.R.A.S. 274, sér. A, 1018-1021 (1972).  MR 45 #4736 |  Zbl 0234.35063
[Bo2] G. Boillat, Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques, C.R.A.S. 278, sér. A, 909-912 (1974).  MR 49 #7614 |  Zbl 0279.35058
[Bo3] G. Boillat, Symétrisation des systèmes d'équations aux dérivées partielles avec densité d'énergie convexe et contraintes, C.R.A.S. 295, sér. 1, 551-554 (1982).  MR 84d:35094 |  Zbl 0511.35057
[B-H] M. Brio, J.K. Hunter, Rotationnaly invariant hyperbolic waves, C.P.A.M. 43 (1990), 1037-1053.  MR 91f:35161 |  Zbl 0726.35079
[Chk] A.V. Chakmazyan, Normal connection in the geometry of normalized submanifolds of affine space, Soviet Math. (Plenum Publ. Corp.), 2131-2140 (1991).  Zbl 0729.53016
[Co-D] B.D. Coleman, E.H. Dill, Z. Angew. Math. Phys. 22, 691-702 (1971).  Zbl 0218.35072
[Co-S1] C.C. Conley, J.A. Smoller, Shock waves as limits of progressive wave solutions of higher order equations, C.P.A.M. 24, 459-472 (1971), Part II : C.P.A.M. 25, 133-146 (1972).  MR 44 #645 |  Zbl 0233.35063
[Co-S2] C.C. Conley, J.A. Smoller, On the structure of magnetohydrodynamic shock waves, C.P.A.M. 27, 367-375 (1974).  MR 51 #4827 |  Zbl 0284.76080
[Daf1] C.M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Diff. Eqs 20, 90-114 (1976).  MR 53 #8671 |  Zbl 0262.35038
[Daf2] C.M. Dafermos, Hyperbolic systems of conservation laws, “Systems of nonlinear partial differential equations”, J. Ball (ed.), NATO ASI series C, No. 111, Reidel Publ. Co., 25-70 (1983).  MR 85h:35144 |  Zbl 0536.35048
[Daf3] C.M. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Rat. Mech. Anal., 94, 373-389 (1986).  MR 87h:35204 |  Zbl 0614.35057
[Daf4] C.M. Dafermos, Admissible wave fans in nonlinear hyperbolic systems, Arch. Rat. Mech. Anal., 106:3, 243-260 (1989).  MR 90m:35124 |  Zbl 0707.35091
[Daf5] C.M. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal., 107:2, 127-157 (1989).  MR 90h:35150 |  Zbl 0714.35046
[Dar1] G. Darboux, Leçons sur la théorie générale des surfaces. Partie IV, Gauthier-Villars 1946.  Zbl 0257.53001
[Dar2] G. Darboux, Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Gauthier-Villars 1910.  JFM 41.0674.04
[Di-V] F. Dillen, L. Vrancken, Affine differential geometry of hypersurfaces, Geometry and Topology of Submanifolds II, Avignon 1988 (World Scientific 1990), 144-164.  MR 91i:53020 |  Zbl 0727.53017
[DiP1] R.J. DiPerna, Global solutions to a class of nonlinear hyperbolic systems of equations, C.P.A.M. 26, 1-28 (1973).  MR 48 #9125 |  Zbl 0256.35053
[DiP2] R.J. DiPerna, Existence in the large for quasilinear hyperbolic conservation laws, Arch. Rat. Mech. Anal. 52, 244-257 (1973).  MR 49 #3340 |  Zbl 0268.35066
[DiP3] R.J. DiPerna, Decay of solutions of hyperbolic systems of conservation laws with a convex extension, Arch. Rat. Mech. Anal. 64, 1-46 (1977).  MR 56 #12626 |  Zbl 0348.35071
[DiP4] R.J. DiPerna, Uniqueness of solutions of nonlinear hyperbolic systems of conservation laws, Indiana Univ. Math. J. 28, 137-188 (1979).  MR 80i:35119 |  Zbl 0409.35057
[DiP5] R.J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rat. Mech. Anal. 82, 27-70 (1983).  MR 84k:35091 |  Zbl 0519.35054
[DiP6] R.J. DiPerna, Measure-valued solutions to conservation laws, Arch. Rat. Mech. Anal. 88, 223-270 (1985).  MR 86g:35121 |  Zbl 0616.35055
[DiP-M] R.J. DiPerna, A. Majda, The validity of geometrical optics for weak solutions of conservation laws, Comm. Math. Phys. 98, 313-347 (1985).
Article |  MR 87e:35057 |  Zbl 0582.35081
[Du-N1] B.A. Dubrovin, S.P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44:6, 35-124 (1989).  MR 91g:58109 |  Zbl 0712.58032
[Du-N2] B.A. DUBROVIN, S.P. NOVIKOV, Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov-Whitham averaging method, Soviet Math. Dokl. Vol 27, no3, 665-669 (1983).  MR 84m:58123 |  Zbl 0553.35011
[Dy] V.F. D'YACENKO, Cauchy's problem for quasilinear sytems, Sov. Math. Dokl. 2, 7-8 (1961).  Zbl 0124.30604
[Fe1] E.V. FERAPONTOV, Hamiltonian systems of hydrodynamic type and their realization on hypersurfaces of a pseudo-euclidean space, Journal of Sov. Math., p. 1970-1995, Plenum (1991).  MR 92f:58159 |  Zbl 0741.58016
[Fe2] E.V. FERAPONTOV, Integration of weakly nonlinear hydrodynamic systems in Riemann invariants, Physics Letters A, p. 112-118, (1991).  MR 92j:35150
[Fe-P] E.V. FERAPONTOV, M.V. PAVLOV, Quasiclassical limit of coupled KdV equations. Riemann invariants and multihamiltonian structure. Physica D, 52, (1991) 211-219.  MR 92h:58084 |  Zbl 0742.35055
[Fi-G] P.C. FIFE, X. GENG, Mathematical aspects of electrophoresis, Proc. Heriot-Watt 1988 : Reaction-Diffusion Equations, Oxford Univ. Press.
[Fre1] H. FREISTÜHLER, Anomale Schocks, strukturell labile Lösungen und die Geometrie der Rankine-Hugoniot Bedingungen, Thèse, Ruhr-Universität Bochum (1987).
[Fre2] H. FREISTÜHLER, On compact linear degeneracy, IMA preprint 551, University of Minnesota, (1989).
[Fre3] H. FREISTÜHLER, Rotationnal degeneracy of hyperbolic systems of conservation laws, Arch. Rat. Mech. Anal. 113, 1991, 39-64.  Zbl 0722.35055
[Fri] K.O. FRIEDRICHS, On the laws of relativistic electro-magneto-fluid dynamics, C.P.A.M. 27, 749-808 (1974).  MR 51 #12116 |  Zbl 0308.76075
[Fri-L] K.O. FRIEDRICHS, P.D. LAX, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. USA 68, 1686-1688 (1971).  MR 44 #3016 |  Zbl 0229.35061
[F-R-S] S. FRIEDLAND, J.W. ROBBIN, J.H. SYLVESTER, On the crossing rule, C.P.A.M. 37, 19-37 (1984).  MR 85b:15010 |  Zbl 0507.15009
[Ga] C.S. GARDNER, Korteweg-de Vries equation and generalizations. IV : the Korteweg-de Vries equation as a Hamiltonian system, J. Math. Phys 12 (1971), 1548-1551.  MR 44 #3615 |  Zbl 0283.35021
[Gel] I.M. GEL'FAND, Some problems in the theory of quasilinear equations, A.M.S. Trans. Ser. 2, No 29, 295-381 (1963).  MR 27 #3921 |  Zbl 0127.04901
[Ger] P. GERMAIN, Contribution à la théorie des ondes de choc en magnétodynamique des fluides, ONERA Publ. No 97, Paris 1959.  MR 22 #8971
[Gl] J. GLIMM, Solutions in the large for nonlinear hyperbolic systems of equations, C.P.A.M. 18, 697-715 (1965).  MR 33 #2976 |  Zbl 0141.28902
[Gl-L] J. GLIMM, P.D. LAX, Decay of solutions of systems of nonlinear hyperbolic conservation laws, Mem. A.M.S. No 101, Providence 1970.  MR 42 #676 |  Zbl 0204.11304
[Go1] S.K. GODUNOV, On the concept of generalized solution, Sov. Math. Dokl. 1, 1194-1196 (1960).  MR 23 #A1932 |  Zbl 0104.31901
[Go2] S.K. GODUNOV, On non-unique "blurring" of discontinuities in solutions of quasilinear systems, Sov. Math. Dokl. 2, 43-44 (1961).  MR 22 #6936 |  Zbl 0117.06401
[Go3] S.K. GODUNOV, An interesting class of quasilinear systems, Sov. Math. Dokl. 2, 947-949 (1961).  Zbl 0125.06002
[Go4] S.K. GODUNOV, Lois de conservation et intégrales d'énergie des équations hyperboliques, Proc. 1986 Nonlinear Hyperbolic Problems XV, p. 135-149, C. Carasso, P.A. Raviart, D. Serre eds., Lect. Notes Math. 1270, Springer-Verlag 1987.  Zbl 0636.35051
[Gue] O. GUÈS, Problèmes mixtes hyperboliques quasilinéaires caractéristiques, Thèse, Université de Rennes-1, (1989).
[Gui-St] V. GUILLEMIN, S. STERNBERG, Symplectic techniques in physics, Cambridge Univ. Press, 1984.  MR 86f:58054 |  Zbl 0576.58012
[Ha-L-vL] A. HARTEN, P.D. LAX, B. VAN LEER, On upstream differencing and Godunov-type schemes for hyperbolic systems of conservation laws, SIAM Review, 25, 1, 35- (1983).  MR 85h:65188 |  Zbl 0565.65051
[Hb1] A. HEIBIG, Etude variationnelle du problème de Riemann, Thèse, Lyon 1989.
[Hb2] A. HEIBIG, Régularité des solutions du problème de Riemann, Comm. in P.D.E., 15, 5, 693-709 (1990).  MR 92g:35131 |  Zbl 0716.35013
[Hb3] A. HEIBIG, Existence et unicité des solutions pour certains systèmes de lois de conservation, Prepubl. ENS-Lyon no 32, (1990) (à paraître dans Arch. Rat. Mech. Anal.).  MR 91i:35124
[Hb4] A. HEIBIG, Error estimates for oscillating solutions to hyperbolic systems of conservation laws, Comm. in P.D.E., 18, 2, 281-304 (1993).  MR 94c:35121 |  Zbl 0818.35061
[Hel] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Acad. Press, New York, 1978.  Zbl 0451.53038
[H-M-R] J.K. HUNTER, A. MAJDA, R. ROSALES, Resonantly interacting weakly nonlinear waves. II. Several space variables, Stud. Appl. Math. 75, 187-226 (1986).  MR 89h:35199 |  Zbl 0657.35084
[Je] A. Jeffrey, Quasilinear hyperbolic systems and waves, Pitman, London 1976.  MR 54 #5635 |  Zbl 0322.35060
[Jn] F. John, Formation of singularities in one-dimensional nonlinear wave propagation, C.P.A.M., Vol 27, 377-405 (1974).  MR 51 #6163 |  Zbl 0302.35064
[Jo-M-R1] J.L. Joly, G. Metivier, J. Rauch, Rigorous resonant 1-d nonlinear geometric optics, Journées EDP, St-Jean de Monts, 1990.
Numdam |  MR 92e:35104 |  Zbl 0718.35094
[Jo-M-R2] J.L. Joly, G. Metivier, J. Rauch, Formal and rigorous nonlinear high frequency waves, Proc. Nonlin. Hyp. Eq., Como 1990, Pitman. (à paraître)
[Jou] E. Jouguet, Sur la propagation des discontinuités dans les fluides, C.R.A.S. 132, 673-676 (1901).  JFM 32.0762.01
[K-K1] B.L. Keyfitz, H.C. Kranzer, The Riemann problem for some nonstrictly hyperbolic systems of conservation laws, Notices AMS, 23 (1976), A-127-128.
[K-K2] B.L. Keyfitz, H.C. Kranzer, Existence and uniqueness of entropy solutions to the Riemann problem for hyperbolic systems of two non-linear conservation laws, J. Diff. Equ., 27 (1978), 444-476.  MR 57 #6866 |  Zbl 0364.35036
[K-K3] B.L. Keyfitz, H.C. Kranzer, A system of non-stictly hyperbolic conservation laws arising in elasticity theory, Arch. Rat. Mech. Anal., 72 (1980) 219-241.  MR 80k:35050 |  Zbl 0434.73019
[K-N] S. Kobayashi, K. Nomizu, Foundations of differential geometry I,II, Wiley Interscience, New York, 1963,1969.  Zbl 0119.37502
[Kru] S.N. KruŽkov, First order quasilinear equations in several independent variables, Math. USSR Sb. 10, 217-242 (1970).  Zbl 0215.16203
[K-T] N.N. Kuznetsov, V.A. Tupshiev, A certain generalization of a theorem of Glimm, Dokl. Akad. Nauk. SSSR, 221, 287-290 (1975).  MR 52 #6197 |  Zbl 0318.35062
[Law] H.B. Lawson Jr, The quantitative theory of foliations, CBMS-NSF Reg. Conf. Ser. in Math. No 27, AMS, Providence, 1977.  MR 56 #6675 |  Zbl 0343.57014
[Lax1] P.D. Lax, The initial value problem for nonlinear hyperbolic equation in two independent variables, Ann. of Math. Studies 33, Princeton, 211-229 (1954).  MR 16,828b |  Zbl 0057.32502
[Lax2] P.D. Lax, Hyperbolic systems of conservation laws: II, CPAM Vol 10, 537-566 (1957).  MR 20 #176 |  Zbl 0081.08803
[Lax3] P.D. Lax, Shock waves and entropy, Contributions to nonlinear functional analysis, Zarantonello ed., p. 603-634, NY Academic Press, 1971.  MR 52 #14677 |  Zbl 0268.35014
[Lax4] P.D. Lax, The formation and decay of shock waves, Amer. Math. Monthly 79, 227-241 (1972).  MR 45 #7304 |  Zbl 0228.35019
[Lax5] P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Reg. Conf. Ser. in Appl. Math. no 11 SIAM (1973).  MR 50 #2709 |  Zbl 0268.35062
[Lax6] P.D. Lax, The multiplicity of eigenvalues, B.A.M.S. Vol 6 No 2, 213-214 (1982).
Article |  MR 83a:15009 |  Zbl 0483.15006
[Lax-Lv] P.D. Lax, C.D. Levermore, The small dispersion limit for the KdV equation I, II & III, C.P.A.M. 36 (1983), 253-290, 571-593, 809-830  MR 85g:35105a |  Zbl 0532.35067
[Lev] C.D. Levermore, The hyperbolic nature of the zero dispersion KdV limit, Comm. Part. Diff. Equ., 13 (1988), 495-514.  MR 89h:35302 |  Zbl 0678.35081
[Li1] T.-P. Liu, Existence and uniqueness for Riemann problems, Trans. A.M.S., 212, 375-382 (1975).  MR 52 #1036 |  Zbl 0317.35062
[Li2] T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Diff. Eqs., 18, 218-234 (1975).  MR 51 #6168 |  Zbl 0297.76057
[Li3] T.-P. Liu, Solutions in the large for the equations of nonisentropic gas dynamics, Indiana Univ. Math. J. 26,1, 147-177 (1977).  MR 55 #8576 |  Zbl 0361.35056
[Li4] T.-P. Liu, The deterministic version of the Glimm scheme, Comm. Math. Phys. 57, 135-148 (1977).
Article |  MR 57 #10259 |  Zbl 0376.35042
[Li5] T.-P. Liu, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations, J. Diff. Eqs, 33, 92-111 (1979).  MR 80g:35075 |  Zbl 0379.35048
[Li6] T.-P. Liu, Admissible solutions of hyperbolic conservation laws, Mem. A.M.S. No 240, Providence 1981.  MR 82i:35116 |  Zbl 0446.76058
[Ma-P] A. Majda, R.L. Pego, Stable viscosity matrices for systems of conservation laws, J. Diff. Eqs. 56, 229-262 (1985).  MR 86b:35132 |  Zbl 0512.76067
[Ma-R] A. Majda, R. Rosales, Resonantly interacting weakly nonlinear waves. I. A single space variable, Stud. Appl. Math. 71, 149-179 (1984).  MR 86e:35089 |  Zbl 0572.76066
[Ma-R-S] A. Majda, R. Rosales, M. Schonbek, A canonical system of integro-differential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79, 205-262 (1988).  MR 90g:76077 |  Zbl 0669.76103
[Mo1] M.S. Mock, Systems of conservation laws of mixed type, J. Diff. Eqs. 37, 70-88 (1980).  MR 81m:35088 |  Zbl 0413.34017
[Mo2] M.S. Mock, A topological degree for orbits connecting critical points of autonomous systems, J. Diff. Eqs. 38, 176-191 (1980).  MR 82f:35126 |  Zbl 0417.34053
[Mo3] M. Sever, Existence in the large for Riemann problems for systems of conservation laws, Trans. A.M.S. 292, 375-381 (1985).  MR 87b:35105 |  Zbl 0591.35037
[Mo4] M. Sever, Uniqueness failure for entropy solutions of hyperbolic systems of conservation laws, C.P.A.M. 42, 173-183 (1989), erratum C.P.A.M. 43, 295-297 (1990).  MR 90a:35143 |  Zbl 0645.35063
[Mo5] M. Sever, The rate of total entropy generation for Riemann problems, J. Diff. Eqs. 87, 115-143 (1990).  MR 91g:35172 |  Zbl 0737.35038
[Mo-F] O.I. Mokhov, E.V. Ferapontov, Nonlocal hamiltonian operators of hydrodynamic type and constant curvature metric, Russ. Math. Surv. 45, 3 (1990) 218-219.  MR 91g:58084 |  Zbl 0712.35080
[Ni-Sm] T. Nishida, J.A. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, C.P.A.M. 26, 183-200 (1973).  MR 48 #9126 |  Zbl 0267.35058
[No-Pi] K. Nomizu, U. Pinkall, Cubic form theorem for affine immersions, Results in Math. (Birkhäuser), 13, 338-362 (1988).  MR 89c:53006 |  Zbl 0657.53007
[Ole1] O.A. Oleinik, Cauchy's problem for nonlinear equations in a class of discontinuous functions, Dokl. 95 (1954), A.M.S. Transl. (2) 42, 7-12 (1964).  MR 16,253a |  Zbl 0154.10801
[Ole2] O.A. Oleinik, Discontinuous solutions of nonlinear differential equations, Uspekhi (1957), A.M.S. Transl. (2) 26, 95-172 (1963).  Zbl 0131.31803
[Ole3] O.A. Oleinik, Uniqueness and stability of the generalized solutions of the Cauchy problem for a quasilinear equation, Uspekhi (1959), A.M.S. Transl. (2) 33, 285-290 (1963).  Zbl 0132.33303
[Olv] P.J. Olver, Applications of Lie groups to differential equations, Springer Verlag, 1986.  MR 88f:58161 |  Zbl 0588.22001
[Ovs] L.V. Ovsiannikov, Group analysis of differential equations, Acad. Press, 1982.  MR 83m:58082 |  Zbl 0485.58002
[Peg] R. Pego, Some explicit resonating waves in weakly nonlinear gas dynamics, Stud. Appl. Math. 79, 263-270 (1988).  MR 90g:76078 |  Zbl 0669.76104
[Ran] W.J.M. Rankine, On the thermodynamical theory of waves of finite longitudinal disturbance, Phil. Trans. Roy. Soc. Lond. 160, 277-288 (1870).  JFM 02.0832.01
[Rie] B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Ges. Werke, Leipzig, 157-175 (1892).
[Sch] M. Schatzman, Continuous Glimm functionals and uniqueness of solutions of the Riemann problem, Ind. Univ.Math.J. 34, 533-589 (1985).  MR 87h:35206 |  Zbl 0579.35053
[Ser1] D. Serre, Systèmes hyperboliques non-linéaires commutant entre eux, Prepubl. Lyon-St Etienne No 26 (1984).
[Ser2] D. Serre, Compacité par compensation et systèmes hyperboliques de lois de conservation, C.R.Acad.Sc. Paris, t. 299, ser.I, No 20, p.555-558 (1984).  MR 86h:35083a |  Zbl 0578.35055
[Ser3] D. Serre, La compacité par compensation pour les systèmes hyperboliques non-linéaires de deux équations à une dimension d'espace, J.M.P.A. 65, 423-468 (1986).  MR 88d:35123 |  Zbl 0601.35070
[Ser4] D. Serre, Solutions à variation bornée pour certains systèmes hyperboliques de lois de conservation, J. of Diff. Equ. 68, 137-169 (1987).  MR 88k:35127 |  Zbl 0627.35062
[Ser5] D. Serre, Domaines invariants pour les systèmes hyperboliques de lois de conservation, J. of Diff. Equ. 69, 46-62 (1987).  MR 88k:35126 |  Zbl 0626.35061
[Ser6] D. Serre, Existence globale d'ondes planes en électromagnétisme non-linéaire, C.R.Acad.Sc. Paris, t. 304, ser.I, No 20 (1987).  MR 88g:35179 |  Zbl 0621.35060
[Ser7] D. Serre, Systèmes hyperboliques riches de lois de conservation, Pre-publ. Lyon-St Etienne no 74 (1988), et Sém. Collège de France, “non-linear PDEs and their applications”, H. Brézis & J.-L. Lions eds., Pitman (à paraître).
[Ser8] D. Serre, Les ondes planes en éléctromagnétisme non linéaire, Physica D, No 38, 227-251 (1988).  MR 90f:78007 |  Zbl 0736.35133
[Ser9] D. Serre, Richness and the classification of quasilinear hyperbolic systems, IMA vol. in Math. and their appl. Vol 29, Springer Verlag, 1991.  MR 92a:35101 |  Zbl 0760.35028
[Ser10] D. Serre, Systèmes d'EDO invariants sous l'action de systèmes hyperboliques d'EDP, Ann. Inst. Fourier, 39, 4, 953-968 (1989).
Numdam |  MR 91i:34050 |  Zbl 0687.35006
[Ser11] D. Serre, Oscillations non-linéaires des systèmes hyperboliques : méthodes et résultats qualitatifs, Ann. Inst. Henri Poincaré, Analyse non linéaire, Vol 8, No 34, p. 351-417, 1991.
Numdam |  MR 92h:35138 |  Zbl 0810.35060
[Ser12] D. Serre, Oscillations non-linéaires de haute fréquence ; dim=1, Pre-publ. Lyon-St Etienne no 97 (1990) et Sém. Collège de France, “non-linear PDEs and their applications”, H. Brézis & J.-L. Lions eds., Pitman (à paraître).
[Ser13] D. Serre, Quelques méthodes d'étude de la propagation d'oscillations hyperboliques non-linéaires, Séminaire EDP 1990-1991, Ecole Polytechnique, exposé No XX.
Numdam |  Zbl 0755.35071
[Ser14] D. Serre, Un modèle relaxé pour les câbles inextensibles, MMAN,25,4 (1991) 465-481.
Numdam |  MR 92g:73054 |  Zbl 0725.73100
[Ser15] D. Serre, Intégrabilité d'une classe de systèmes de lois de conservation, Prépubl. ENS-Lyon No 45 (1991), à paraître dans Forum Math.
Article |  Zbl 0769.35040
[Sm] J.A. Smoller, Shock waves and reaction-diffusion equations, Grund. Math. Wiss. 258, Springer Verlag 1983.  MR 84d:35002 |  Zbl 0508.35002
[Sp] M. Spivak, A comprehensive introduction to differential geometry, Tome III, Publish or Perish Inc., 1975.  Zbl 0439.53003
[Sto] G.G. Stokes, On a difficulty in the theory of sound, Philosophical Magazine 33, 349-356, (1848).
[Str1] J.W. Strutt (Lord Rayleigh), The Theory of Sound, Vol. II, London : McMillan 1878.
[Str2] J.W. Strutt (Lord Rayleigh), Note on tidal bores, Proc. Roy. Soc. London A 81,448-449 (1908).  JFM 39.0799.01
[Te1] B. Temple, Solutions in the large for some nonlinear hyperbolic conservation laws of gas dynamics, J. Diff. Eqs. 41, 96-161 (1981).  Zbl 0476.76070
[Te2] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc. 280, 781-795 (1983).  MR 84m:35080 |  Zbl 0559.35046
[Ts] S.P. Tsarev, On the Liouville Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type arising in the Bogolyubov-Whitham averaging theory, Russian Math. Surveys 39 : 6, 227-228 (1984).  MR 86h:58075 |  Zbl 0582.58012
[Ts2] S.P. Tsarev, On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Soviet Math. Dokl. 31 No3, 488-491 (1985).  MR 87b:58030 |  Zbl 0605.35075
[Ts3] S.P. Tsarev, Ph. D. Thesis, Moscow state University, 1986.
[Ts4] S.P. TSAREV, The geometry of hamiltonian systems of hydrodynamic type. The generalized hodograph method, Math. USSR Izvsetiya 37 No2 (1991) 397-419.  MR 92b:58109 |  Zbl 0796.76014
[Vo] A.I. VOL'PERT, The BV space and quasilinear equations, Math. USSR Sb. 2, 225-267 (1967).  Zbl 0168.07402
[Vv] N.D. V'VEDENSKAYA, An example of non-uniqueness of a generalized solution of a quasilinear system of equations, Sov. Math. Dokl. 2, 89-90 (1961).  Zbl 0114.30001
[Wa] D. WAGNER, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J.Diff.Eqs. 68, 118-136 (1987).  MR 88i:35100 |  Zbl 0647.76049
[Wh] G.B. WHITHAM, Linear and nonlinear waves, Wiley NY 1974.  Zbl 0373.76001
Copyright Cellule MathDoc 2014 | Crédit | Plan du site