Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule
Ambrosetti, Antonio
Critical points and nonlinear variational problems. Mémoires de la Société Mathématique de France, Sér. 2, 49 (1992), p. 1-139
Texte intégral djvu | pdf | Analyses Zbl 0766.49006 | 5 citations dans Numdam

URL stable: http://www.numdam.org/item?id=MSMF_1992_2_49__1_0

Bibliographie

[1] ALVINO A.-LIONS P.L.-TROMBETTI G., Comparaison des solutions d'équations paraboliques et elliptiques par symétrisation. Une méthode nouvelle, C.R.A.S. 303 (1986), 975-978.  Zbl 0617.35008
[2] AMANN H.-HESS P., A multiplicity result for a class of elliptic boundary value problems Proc. Royal. Soc. Ed. 84, A (1979), 145-151.  MR 80m:35032 |  Zbl 0416.35029
[3] AMANN H.-ZEHNDER E., Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 7 (1980), 539-603.
Numdam |  MR 82b:47077 |  Zbl 0452.47077
[4] AMBROSETTI A., Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro, Atti Acc. Naz. Lincei, 52 (1972), 660-667.  MR 48 #9103 |  Zbl 0249.35030
[5] AMBROSETTI A., A perturbation theorem for superlinear boundary value problems, M.R.C. Tech. Summ. Rep. (1974).
[6] AMBROSETTI A., Elliptic equations with jumping nonlinearities, J. Math. Phys. Sci. 18-1 (1984), 1-12.  MR 86d:35049 |  Zbl 0589.35043
[7] AMBROSETTI A., Remarks on dynamical systems with singular potentials, in Nonlinear Analysis, a trubute in honour of Giovanni Prodi, Quaderni Scuola Norm. Sup. Pisa, (1991), 51-60.  MR 93m:58018
[8] AMBROSETTI A.-BADIALE M., The dual variational principle and elliptic problems with discontinuous nonlinearities, Journ. Math. Anal. Appl. 140, 2 (1989), 363-373.  MR 90k:35097 |  Zbl 0687.35033
[9] AMBROSETTI A.-BESSI U., Multiple periodic trajectories in a relativistic gravitational field, in Variational Methods (Ed.H. Berestycki et al.), Birkäuser, (1990), 373-381.  MR 93k:58187 |  Zbl 0725.34038
[10] AMBROSETTI A.-BESSI U., Multiple closed orbits for perturbed Keplerian problems, J. Diff. Equat. to appear. Preliminary note in Rend. Mat. Acc. Lincei, s. 9, v. 2 (1991), 11-15.  MR 92f:70011 |  Zbl 0759.34033
[11] AMBROSETTI A.-BERTOTTI M.L., Homoclinics for a second order conservative systems, Proc. Conf. in honour of L. Nirenberg, Trento 1990, to appear.  Zbl 0804.34046
[12] AMBROSETTI A.-CALAHORRANO M. - DOBARRO F., Remarks on the Grad-Shafranov equation, Appl. Math. Lett. 3-3 (1990), 9-11.  MR 91k:35085 |  Zbl 0772.35085
[13] AMBROSETTI A.-COTI ZELATI V., Critical point with lack of compactness and singular dynamical systems, Ann. Mat. Pura Appl. 149 (1987), 237-259.  MR 89e:58023 |  Zbl 0642.58017
[14] AMBROSETTI A.-COTI ZELATI V., Perturbation of Hamiltonian Systems with Keplerian Potentials, Mat. Zeit. 201 (1989), 227-242. Preliminary Note in C. R. Acad. Sci. Paris 307 (1988), 568-571.  MR 90g:58105 |  Zbl 0653.34032
[15] AMBROSETTI A.-COTI ZELATI V., Closed orbits with fixed energy for singular Hamiltonian Systems, Archive Rat. Mech. Analysis, 112 (1990), 339-362.  MR 91k:34053 |  Zbl 0737.70008
[16] AMBROSETTI A.-COTI ZELATI V., Closed orbits with fixed energy for a class of N-body problems, Annales Inst H. Poincaré Analyse Nonlin, to appear.
Numdam |  Zbl 0757.70007
[17] AMBROSETTI A.-COTI ZELATI V. - EKELAND I., Symmetry breaking in Hamiltonian Systems, J. Diff. Equat. 67 (1987), 165-184.  MR 88h:58040 |  Zbl 0606.58043
[18] AMBROSETTI A.-EKELAND I., Periodic solution of a class of Hamiltonian Systems with singularities, Proc. Royal Soc. Edinburgh 114 A (1990), 1-13.  MR 91m:58127 |  Zbl 0708.34031
[19] AMBROSETTI A.-LUPO D., A class of nonlinear Dirichlet with multiple solutions, J. Nonlinear Anal. T.M.A..8-10 (1984), 1145-1150.  MR 86d:35050 |  Zbl 0554.35046
[20] AMBROSETTI A.-MANCINI G., Sharp nonuniqueness results for some nonlinear problems, J. Nonlinear Anal. T.M.A. 3 (1979), 635-645.  MR 80k:47073 |  Zbl 0433.35025
[21] AMBROSETTI A.-MANCINI G., Remarks on some free boundary problems, Contribution to nonlinear Partial Differential Equations, Pitman (1981), 24-36.  MR 84b:35120 |  Zbl 0477.35084
[22] AMBROSETTI A.-MANCINI G., Solution of minimal period for a class of convex Hamiltonian systems, Math. Annalen 255 (1981), 405-421.  MR 82j:58043 |  Zbl 0466.70022
[23] AMBROSETTI A.-MANCINI G., On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories, J. Diff. Equat.43 (1982), 249-256.  MR 83m:58034 |  Zbl 0492.70018
[24] AMBROSETTI A.-PRODI G., On the inversion of some differentiable mapping with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-246.  MR 47 #9377 |  Zbl 0288.35020
[25] AMBROSETTI A.-PRODI G., A primer of Nonlinear Analysis, Cambridge Univ. Press, to appear.  Zbl 0781.47046
[26] AMBROSETTI A.-RABINOWITZ P.H., Dual variational methods in critical points theory and applications, J. Funct. Anal. 14 (1973), 349-381.  MR 51 #6412 |  Zbl 0273.49063
[27] AMBROSETTI A.-SRIKANTH P.N., Superlinear elliptic problems and the dual principle in critical point theory, J. Math. Phys. Sci. 18-4 (1984), 441-451.  MR 87g:35071 |  Zbl 0581.35020
[28] AMBROSETTI A.-STRUWE M., A note on the problem + Δu ‗ λu , u |u|2⋆-2, u ∊ H10, λ > 0, Manus Math. 54 (1986), 373-379.  MR 87h:35076 |  Zbl 0596.35043
[29] AMBROSETTI A.-STRUWE M., Existence of steady vortex rings in an ideal fluid, Arch. Rat. Mech. Anal. 108, 2 (1989), 97-109.  MR 90g:76036 |  Zbl 0694.76012
[30] AMBROSETTI A.-TURNER R.E.L., Some discontinuous variationals problems, Diff. and Integral. Equa. 1 (1988), 341-349.  MR 89c:35052 |  Zbl 0728.35037
[31] AMBROSETTI A.-YANG JANFU, Asymptotic behaviour in planar vortex theory, Rend. Mat. Acc. Lincei, s.9-1 (1990), 285-291.  Zbl 0709.76027
[32] AMICK C.J.-FRAENKEL L.E., The uniqueness of Hill's spherical vortex, Arch. Rat. Mech. Anal. 2 (1986), 91-119.  MR 87b:35139 |  Zbl 0609.76018
[33] AMICK C.J.-TURNER R.E.L., A global branch of steady vortex rings, J. Reine Angw. Math. 384 (1988), 1-23.
Article |  MR 89c:35134 |  Zbl 0628.76032
[34] BAHRI A., Topological results on a certain class of functionals and applications, J. Funct. Anal. 41 (1981), 397-427.  MR 84c:58017 |  Zbl 0499.35050
[35] BAHRI A.-BERESTYCKI H., A perturbation method in critical point theory and applications, Trans. Amer. Math. Soc. 267 (1981), 1-32.  MR 82j:35059 |  Zbl 0476.35030
[36] BAHRI A.-CORON J.M., On a nonlinear elliptic equation involving the critical Sobolev exponent : the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.  MR 89c:35053 |  Zbl 0649.35033
[37] BAHRI A.-LIONS P.L., Morse index of some min-max critical points I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), 1027-1037.  MR 90b:58035 |  Zbl 0645.58013
[38] BAHRI A.-RABINOWITZ P.H., A minimax method for a class of Hamiltonian systems with singular potentials, J. Funct. Anal. 82 (1989), 412-428.  MR 90g:58030 |  Zbl 0681.70018
[39] BAHRI A.-RABINOWITZ P.H., Solutions of the three-body problem via critical points of infinity, Preprint.
[40] BANDLE C., Isoperimetric Inequalities and Applications, Pitman, London (1980).  MR 81e:35095 |  Zbl 0436.35063
[41] BENCI V., A geometrical index for the group S1 and some applications to the research of periodic solutions of O.D.E.'s, Comm. Pure Appl. Math. 34 (1981), 393-432.  MR 82k:58040 |  Zbl 0447.34040
[42] BENCI V.-CERAMI G., The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rat. Mech. Anal. 114 (1991), 79-93.  MR 91j:35102 |  Zbl 0727.35055
[43] BENCI V.-GIANNONI F., Periodic solutions of prescribed energy for a class of Hamiltonian systems with singular potentials, J. Diff. Eq. 82 (1989), 60-70.  MR 90k:58176 |  Zbl 0689.34034
[44] BENCI V.-RABINOWITZ P.H., Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273.  MR 80i:58019 |  Zbl 0465.49006
[45] BERESTYCKI H.-LASRY J.M.-MANCINI G.-RUF B., Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. (1985), 253-290.  MR 86j:58039 |  Zbl 0569.58027
[46] BERGER M.S. - FRAENKEL L.E., Nonlinear desingularization in certain free-boundary problems, Comm. Math. Phys. 77 (1980), 149-172.
Article |  MR 81m:35055 |  Zbl 0454.35087
[47] BESSI U., Multiple closed orbits for singular conservative systems via geodesics theory, Rend. Sem. Mat. Univ. Padova, to appear.
Numdam |  Zbl 0850.70210
[48] BESSI U., Multiple closed orbits of fixed energy for gravitational potentials, J. Diff. Eq., to appear.  Zbl 0787.34029
[49] BESSI U., Multiple homoclinics for autonomous singular potentials, to appear.
[50] BESSI U. - COTI ZELATI V., Symmetries and noncollision closed orbits for a planar N-body type problems, J. Nonlin. Anal. T.M.A. 16 (1991), 587-598.  MR 92a:70006 |  Zbl 0715.70016
[51] BREZIS H. - CORON J.M. - NIRENBERG L., Free vibrations for a nonlinear equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math. 33 (1980), 667-684.  MR 81k:35013 |  Zbl 0484.35057
[52] BREZIS H. - NIRENBERG L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.  MR 84h:35059 |  Zbl 0541.35029
[53] BROWDER F., Infinite dimensional manifolds and nonlinear eigenvalue problems, Ann. of Math. 82 (1965), 459-477.  MR 34 #3102 |  Zbl 0136.12002
[54] CANDELA A.M., Remarks on the number of positive solutions for a class of nonlinear elliptic problems, Diff. & Int. Eq. (to appear).  Zbl 0784.35031
[55] CAPOZZI A. - FORTUNATO D. - PALMIERI G., An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. Poincaré, Anal. Nonlin. 2 (1985), 463-470.
Numdam |  MR 87j:35126 |  Zbl 0612.35053
[56] CAPOZZI A. - GRECO C. - SALVATORE A., Lagrangian systems in presence of singularities, Proc. Am. Math. Soc. 102 (1988), 125-130.  MR 88m:58167 |  Zbl 0664.34054
[57] CLARKE F.H., Periodic solutions of Hamiltonian inclusions, J. Diff. Equat. 40 (1981), 1-6.  MR 83a:58035 |  Zbl 0461.34030
[58] CLARKE F.H. - EKELAND I., Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103-116.  MR 81e:70017 |  Zbl 0403.70016
[59] CHANG C.K., Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.  MR 82h:35025 |  Zbl 0487.49027
[60] CHANG C.K., A remark on the perturbation of critical manifolds, Preprint Peking University.
[61] CERAMI G., Soluzioni positive di problemi con parte nonlienare discontinua e applicazioni a un problema di frontiera libera, Boll. U.M.I. 2 (1983), 321-338.  MR 85a:35034 |  Zbl 0515.35025
[62] CORON J.M., Topologie et cas limite des injections de Sobolev, C.R. Acad. Sci. Paris 299 (1984), 209-212.  MR 86b:35059 |  Zbl 0569.35032
[63] COTI ZELATI V., Periodic solutions for a class of planar, singular dynamical systems, J. Math. Pures et Appl. 68 (1989), 109-119.  MR 90f:34071 |  Zbl 0633.34034
[64] COTI ZELATI V., A class of periodic solutions of the N-body problem, Cel. Mech. and Dyn. Astr. 46 (1989), 177-186.  MR 91c:58116 |  Zbl 0684.70006
[65] COTI ZELATI V., Periodic solutions for N-body type problems, Annales Inst. H. Poincaré, Analyse Nonlin. 7 (1990), 477-492.
Numdam |  MR 93a:70009 |  Zbl 0723.70010
[66] COTI ZELATI V. - EKELAND I. - SÉRÉ E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann. Vol.288 (1990), 133-160.  MR 91g:58065 |  Zbl 0731.34050
[67] COTI ZELATI V. - RABINOWITZ P.H., Homoclinic orbits for a second order Hamiltonian systems possessing superquadratic potentials, Preprint SISSA, Trieste (1980).
[68] COTI ZELATI V. - SERRA E., Collision and non-collision solutions for a class of Keplerian-like dynamical systems, Preprint SISSA, Trieste (1990).
[69] DANCER E.N., Counterexamples to some conjectures on the number of solutions of nonlinear equations, Math. Ann. 272 (1985), 421-440.  MR 86j:35056 |  Zbl 0556.35001
[70] DANCER E.N., The G-invariant implicit function theorem in infinite dimension, Proc. Roy. Soc. Edinburgh, 102-A (1986), 211-220.  MR 87i:58015 |  Zbl 0601.58013
[71] DEGIOVANNI M.-GIANNONI F., Periodic solutions of dynamical systems with Newtonian type potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 467-494.
Numdam |  MR 91b:58201 |  Zbl 0692.34050
[72] EKELAND I., Nonconvex minimization problems, Bull. Am. Math. Soc. 1 (1979), 443-474.
Article |  MR 80h:49007 |  Zbl 0441.49011
[73] EKELAND I., Convexity methods in hamiltonian mechanics, Springer, 1990.  MR 91f:58027 |  Zbl 0707.70003
[74] EKELAND I.-HOFER H., Periodic solution with prescribed minimal period for convex autonomous hamiltonian systems, Invent. Math. 81 (1985), 155-188.  MR 87b:58028 |  Zbl 0594.58035
[75] EKELAND I.-LASRY J.M., On the number of closed trajectories for a hamiltonian flow on a convex energy surface, Ann. of Math. 112 (1980), 283-319.  MR 81m:58032 |  Zbl 0449.70014
[76] FADELL E.-HUSSEINI S., A note on the category of free loop space, Proc. A.M.S. 107 (1989), 527-536.  MR 90a:55008 |  Zbl 0676.58019
[77] FRAENKEL L.E.-BERGER M.S., A global theory of steady vortex rings in an ideal fluid, Acta Math. 132 (1974), 13-51.  MR 54 #10901 |  Zbl 0282.76014
[78] FUCIK S., Solvability of nonlinear equations and boundary value problems, D. Reidel Publ. Co., Dordrecht (1980).  MR 83c:47079 |  Zbl 0453.47035
[79] GALLOUET T.-KAVIAN O., Resonance for jumping nonlinearities, Comm. P.D.E. 7-3 (1982), 325-342.  MR 84f:35054 |  Zbl 0497.35080
[80] GIDAS B.-NI W.M.-NIRENBERG L., Symmetry and relates properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
Article |  MR 80h:35043 |  Zbl 0425.35020
[81] GIRARDI M.-MATZEU M., Essential critical points of linking type and solutions of minimal period to superquadratic hamiltonian systems, J. Nonlinear Analysis T.M.A., to appear.  Zbl 0776.58030
[82] GORDON W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113-135.  MR 51 #14152 |  Zbl 0276.58005
[83] GHOUSSOUB N.-PREISS D., A general mountain pass principle for locating and classifying critcal points, Annales Inst. H. Poincaré, Analyse Nonlineaire, 6 (1989), 321-330.
Numdam |  Zbl 0711.58008
[84] GRECO C., Periodic solutions of a class of singular Hamiltonian systems, J. Nonlinear Analysis T.M.A. 12 (1988), 259-270.  MR 89d:58040 |  Zbl 0648.34048
[85] HOFER H., A note on the topological degree at a critical point of mountain-pass type, Proc. Am. Math. Soc. 90 (1984), 309-315.  MR 85a:58015 |  Zbl 0545.58015
[86] HOFER H.-WYSOCKI K., First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann. Vol. 288 (1990), 483-503.  MR 91m:58064 |  Zbl 0702.34039
[87] HOFER H.-ZEHNDER E., Periodic solutions on hypersurfaces and a result by C. Viterbo, Inv. Math. 90 (1987), 1-9.  MR 89a:58040 |  Zbl 0631.58022
[88] KLINGENBERG W., Lectures on closed geodesics, Springer, 1978.  MR 57 #17563 |  Zbl 0397.58018
[89] KASDAN J.L.-WARNER F.W., Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597.  MR 57 #16972 |  Zbl 0325.35038
[90] KOVALEVSKY J., Introduction to celestial Mechanics, D. Reidel Publ. Co., Dordrecht, 1967.  Zbl 0189.24502
[91] KRASNOSELSKII M.A., Topological Methods in the theory of non-linear integral equations, Pergamon, Oxford, 1965.
[92] LANDESMAN E.M.-LAZER A.C., Nonlinear perturbations of linear elliptic problems at resonance, J. Math. Mech. 19 (1970), 609-623.  MR 42 #2171 |  Zbl 0193.39203
[93] LAZER A.C.-MCKENNA P.J., On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-294.  MR 83e:35050 |  Zbl 0496.35039
[94] LAZZO M., Multiple positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, C.R. Acad. Sci. Paris, to appear.  Zbl 0761.35021
[95] LEVI CIVITA T., Introduzione alla meccanica relativistica, Zanichelli, Bologna, 1928.
[96] LUSTERNIK L.-SCHNIRELMAN L., Méthode topologique dans les problémes varationelles, Hermann, Paris (1934).  Zbl 0011.02803 |  JFM 60.1228.04
[97] MAJER P., Ljusternik-Schnirelman theory without Palais-Smale condition and singular dynamical systems, Annales Inst. H. Poincaré, Analyse Nonlin.8 (1991), 459-476.
Numdam |  MR 93e:58024 |  Zbl 0749.58046
[98] MAWHIN J.-WILLEM M., Critical point theory and hamiltonian systems, Springer, 1989.  MR 90e:58016 |  Zbl 0676.58017
[99] MOSER J., Periodic orbits near an equilibrium and a theorem by Alan Weinstein, Comm. Pure Appl. Math. 29 (1976), 727-747.  MR 54 #13998 |  Zbl 0346.34024
[100] MOSER J., Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23 (1970), 609-636.  MR 42 #4824 |  Zbl 0193.53803
[101] NI W.M., On the existence of global vortex rings, J. d'Analyse Math. 37 (1980), 208-247.  MR 81i:76017 |  Zbl 0457.76020
[102] NIRENBERG L., Variational and topological methods in nonlinear problems, Bull. A.M.S. 4-3 (1981), 267-302.
Article |  MR 83e:58015 |  Zbl 0468.47040
[103] NORBURY J., A family of steady vortex rings, J. Fluid Mech. 57 (1973), 417-431.  Zbl 0254.76018
[104] PALAIS R., Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115-132.  MR 41 #4584 |  Zbl 0143.35203
[105] PALAIS R.-SMALE S., A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171.
Article |  MR 28 #1634 |  Zbl 0119.09201
[106] POHOZAEV S.I., Eigenfunctions of the equations Δu + λf(u) &#x003D 0, Soviet Math. 5 (1965), 1408-1411.  Zbl 0141.30202
[107] RABINOWITZ P.H., Periodic solutions of hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157-184.  MR 57 #7674 |  Zbl 0358.70014
[108] RABINOWITZ P.H., A variational method for finding periodic solutions of differential equations, Nonlinear Evolution Equations (M.G. Crandall ed.), Academic Press (1978), 225-251.  MR 80b:34043 |  Zbl 0486.35009
[109] RABINOWITZ P.H., On a theorem of Hofer and Zehnder, Periodic solutions of hamiltonian systems and related topics (P.H. Rabinowitz et al. ed.), NATO ASI Series C Vol. 209, Reidel Publ. Co., 1986, 245-253.  MR 89g:58076 |  Zbl 0635.58014
[110] RABINOWITZ P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. in Math. 65, A.M.S., Providence, 1986.  MR 87j:58024 |  Zbl 0609.58002
[111] RABINOWITZ P.H., Homoclinic orbits for a class of Hamiltonian systems, Proceed. Royal Soc. Edinburgh, Vol.114A (1990), 33-38.  MR 91c:58118 |  Zbl 0705.34054
[112] RABINOWITZ P.H.-TANAKA K., Some results on connecting orbits for a class of Hamiltonian systems, Math. Zeit., to appear.  Zbl 0707.58022
[113] SCHWARTZ J.T., Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307-315.  MR 29 #4069 |  Zbl 0152.40801
[114] SÉRÉ E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., to appear.
Article |  Zbl 0725.58017
[115] SERRA E., Dynamical systems with singular potentials : existence and qualitative properties of periodic motions, Ph.D. Thesis, SISSA, Trieste (1991).
[116] SERRA E.-TERRACINI S., Noncollision periodic solutions to some three- body like problems, Preprint SISSA, Trieste (1990).
[117] SRIKANTH P.N., Uniqueness of solutions of nonlinear Dirichlet problems, to appear.
[118] STAMPACCHIA G., Le probléme de Dirichlet pour les équations elliptiques du second ordre a coefficients discontinuous, Ann. Inst. Fourier, 15 (1965), 189-258.
Numdam |  MR 33 #404 |  Zbl 0151.15401
[119] STRUWE M., Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manus. Math. 32 (1980), 335-364.  MR 82e:58030 |  Zbl 0456.35031
[120] STRUWE M., Variational methods, Springer, 1990.  MR 92b:49002 |  Zbl 0746.49010
[121] STUART C., Differential equations with discontinuos nonlinearities, Arch. Rat. Mech. Anal. 63 (1976), 59-75.  MR 58 #1355 |  Zbl 0393.34010
[122] STUART C.-TOLAND J.F., A variational method for boundary value problems with discontinuous non-linearities, J. London Math. Soc. 21 (1980), 319-328.  MR 81i:35055 |  Zbl 0434.35042
[123] SZULKIN A., Ljusternik-Schnirelmann theory on C1 manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 119-139.
Numdam |  MR 90a:58027 |  Zbl 0661.58009
[124] TANAKA K., Homoclinic orbits for a singular second order Hamiltonian system, Annales Inst. H. Poincaré, Analyse Non-lineaire, Vol.7 (1990), 427-438.
Numdam |  MR 93g:58029 |  Zbl 0712.58026
[125] TANAKA K., Non-collision solutions for a second order singular Hamiltonian system with weak forces, Preprint (1991).
[126] TERRACINI S., Periodic solutions to dynamical systems with Keplerian type potentials, Ph.D. Thesis, SISSA, Trieste (1990).
[127] VAN GROESEN E.W.C., Analytical mini-max methods for Hamiltonian break orbits of prescribed energy, J. Math. Anal. Appl. 132 (1988), 1-12.  Zbl 0665.70022
[128] WANG Z.Q., On a superlinear elliptic equation, Annales Inst H. Poincaré Analyse nonlin. 8 (1991), 43-58.
Numdam |  MR 92a:35064 |  Zbl 0733.35043
[129] WEINSTEIN A., Normal modes for nonlinear hamiltonian systems, Invent. Math. 20 (1973), 45-57.  MR 48 #6564 |  Zbl 0264.70020
[130] WEINSTEIN A., Periodic orbits for convex hamiltonian systems, Ann. of Math. 108 (1978), 507-518.  MR 80g:58034 |  Zbl 0403.58001
[131] YANG JANFU, Existence and asymptotic behaviour in planar vortex theory, to appear.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site