Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Costabel, Martin; Dauge, Monique; Nicaise, Serge
Singularities of eddy current problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, 37 no. 5 (2003), p. 807-831
Texte intégral djvu | pdf | Analyses MR 2020865 | Zbl pre02029416
Class. Math.: 35B65, 35R05, 35Q60
Mots clés: Eddy current problem, corner singularity, edge singularity

URL stable: http://www.numdam.org/item?id=M2AN_2003__37_5_807_0

Voir cet article sur le site de l'éditeur

Résumé

We consider the time-harmonic eddy current problem in its electric formulation where the conductor is a polyhedral domain. By proving the convergence in energy, we justify in what sense this problem is the limit of a family of Maxwell transmission problems: Rather than a low frequency limit, this limit has to be understood in the sense of Bossavit [11]. We describe the singularities of the solutions. They are related to edge and corner singularities of certain problems for the scalar Laplace operator, namely the interior Neumann problem, the exterior Dirichlet problem, and possibly, an interface problem. These singularities are the limit of the singularities of the related family of Maxwell problems.

Bibliographie

[1] A. Alonso and A. Valli, A domain decomposition approach for heterogeneous time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg 143 (1997) 97112.  Zbl 0883.65096
[2] A. Alonso-Rodriguez, F. Fernandes and A. Valli, Weak and strong formulations for the time-harmonic eddy-current problem in general domains. Report UTM. Dipartimento di Matematica, Univ. di Trento, Italy 603 (2001).
[3] H. Ammari, A. Buffa and J.-C. Nédélec, A justification of eddy currents model for the Maxwell equations. SIAM J. Appl. Math. 60 (2000) 18051823.  Zbl 0978.35070
[4] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21 (1998) 823864.  Zbl 0914.35094
[5] F. Assous, P. Ciarlet Jr. and E. Sonnendrucker, Resolution of the Maxwell equations in a domain with reentrant corners. RAIRO Modél. Math. Anal. Numér. 32 (1998) 359389.
Numdam |  Zbl 0924.65111
[6] R. Beck, R. Hiptmair, R.H.W. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM: M2AN 34 (2000) 159182.
Numdam |  Zbl 0949.65113
[7] M. Birman and M. Solomyak, $L^2$-theory of the Maxwell operator in arbitrary domains. Russian Math. Surveys 42 (1987) 7596.  Zbl 0653.35075
[8] M. Birman and M. Solomyak, On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersburg. Math. J. 5 (1993) 125139.  Zbl 0804.35127
[9] A.-S. Bonnet-Ben Dhia, C. Hazard and S. Lohrengel, A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59 (1999) 20282044.  Zbl 0933.78007
[10] A. Bossavit, Two dual formulations of the 3D eddy-current problem. COMPEL 4 (1985) 103116.
[11] A. Bossavit, Electromagnétisme en vue de la modélisation. Springer-Verlag (1993).  MR 1616583 |  Zbl 0787.65090
[12] D. Colton and R. Kress, Integral equation methods in scattering theory. John Wiley & Sons, Inc., New York, Pure Appl. Math. (1983).  MR 700400 |  Zbl 0522.35001
[13] M. Costabel and M. Dauge, Singularités d’arêtes pour les problèmes aux limites elliptiques, in Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), Exp. No. IV, 12 p. École Polytech., Palaiseau (1992).
Numdam |  Zbl 0796.35033
[14] M. Costabel and M. Dauge, Stable asymptotics for elliptic systems on plane domains with corners. Comm. Partial Differential Equations 9 & 10 (1994) 16771726.  Zbl 0814.35024
[15] M. Costabel and M. Dauge, Singularities of Maxwell’s equations on polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221276.  Zbl 0968.35113
[16] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements. Numer. Math. 93 (2002) 239277.  Zbl 1019.78009
[17] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627649.
Numdam |  Zbl 0937.78003
[18] M. Dauge, Elliptic boundary value problems on corner domains. Springer-Verlag, Berlin L.N. in Math. 1341 (1988).  MR 961439 |  Zbl 0668.35001
[19] M. Dobrowolski, Numerical approximation of elliptic interface and corner problems. Habilitationsschrift, Bonn, Germany (1981).
[20] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Springer Ser. Comput. Math. 5 (1986).  MR 851383 |  Zbl 0585.65077
[21] P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics. Pitman, Boston 24 (1985).  MR 775683 |  Zbl 0695.35060
[22] R. Hiptmair, Symmetric coupling for eddy currents problems. SIAM J. Numer. Anal. 40 (2002) 4165.  Zbl 1010.78011
[23] V.A. Kondrat’ev, Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227313.  Zbl 0194.13405
[24] D. Leguillon and E. Sanchez-Palencia, Computation of singular solutions in elliptic problems and elasticity. RMA 5. Masson, Paris (1991).  Zbl 0647.73010
[25] D. Mercier, Minimal regularity of the solutions of some transmission problems. Math. Methods Appl. Sci. 26 (2003) 321348.  Zbl 1035.35035
[26] S. Nicaise, Polygonal interface problems. Peter Lang, Berlin (1993).  MR 1236228 |  Zbl 0794.35040
[27] S. Nicaise and A.-M. Sändig, General interface problems I,II. Math. Methods Appl. Sci. 17 (1994) 395450.  Zbl 0824.35014
[28] S. Nicaise and A.-M. Sändig, Transmission problems for the Laplace and elasticity operators: Regularity and boundary integral formulation. Math. Methods Appl. Sci. 9 (1999) 855898.  Zbl 0958.35023
[29] S. Nicaise, Edge elements on anisotropic meshes and approximation of the Maxwell equations. SIAM J. Numer. Anal. 39 (2001) 784816.  Zbl 1001.65122
[30] R. Picard, On the boundary value problems of electro- and magnetostatics. Proc. Roy. Soc. Edinburgh Sect. A 92 (1982) 165174.  Zbl 0516.35023
Copyright Cellule MathDoc 2014 | Crédit | Plan du site