Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Kohn, Robert V.; Niethammer, Barbara
Geometrically nonlinear shape-memory polycrystals made from a two-variant material. ESAIM : Modélisation Mathématique et Analyse Numérique, 34 no. 2 (2000), p. 377-398
Texte intégral djvu | pdf | Analyses MR 1765665 | Zbl 0978.74015

URL stable: http://www.numdam.org/item?id=M2AN_2000__34_2_377_0

Bibliographie

[1] J.M. Bail and R.D. James, Proposed experimental test of a theory of fine microstructures and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450.  Zbl 0758.73009
[2] J.M. Ball and F. Murat, Wlp-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253.  MR 759098 |  Zbl 0549.46019
[3] K. Bhattacharya, Theory of martensitic microstructure and the shape-memory effect, unpublished lecture notes.
[4] K. Bhattacharya and R.V. Kohn, Elastic energy minimization and the recoverable strains of polycrystalline shape-memory materials. Arch. Rat Mech. Anal. 139 (1998) 99-180.  MR 1478776 |  Zbl 0894.73225
[5] A. Braides, Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. Detta XL, V. Ser., Mem. Mat. 9 (1985) 313-322.  MR 899255 |  Zbl 0582.49014
[6] O.P. Bruno and G.H. Goldsztein, A fast algorithm for the simulation of polycrystalline misfïts: martensitic transformations in two space dimensions, Proc. Roy. Soc. Lond. Ser. A (to appear).  MR 1809360 |  Zbl 0968.74063
[7] O.P. Bruno and G.H. Goldsztein, Numerical simulation of martensitic transformations in two- and three-dimensional polycrystals, J. Mech. Phys. Solids (to appear).  MR 1766400 |  Zbl 0966.74078
[8] F. John and L. Nirenberg, On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426.  MR 131498 |  Zbl 0102.04302
[9] F. John, Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391-413.  MR 138225 |  Zbl 0102.17404
[10] F. John Bounds for deformations in terms of average strains, in Inequalities III, O. Shisha Ed., Academic Press (1972) 129-143.  MR 344392 |  Zbl 0292.53003
[11] F. John, Uniqueness of Non-Linear Elastic Equilibrium for Prescribed Boundary Displacements and Sufficiently Small Strains. Comm. Pure Appl. Math. 25 (1972) 617-635.  MR 315308 |  Zbl 0287.73009
[12] R. V. Kohn, The relaxation of a double-well energy. Continuum Mech Thermodyn. 3 (1991) 193-236.  MR 1122017 |  Zbl 0825.73029
[13] R. V. Kohn and V. Lods, in preparation (1999).
[14] R. V. Kohn and G. Strang, Optimal design and relaxation of variational problems II. Comm. Pure. Appl. Math. 34 (1986) 139-182.  MR 820067 |  Zbl 0621.49008
[15] S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rat. Mech. Anal.99 (1987) 189-212.  MR 888450 |  Zbl 0629.73009
[16] Y. C. Shu and K. Bhattacharya, The influence of texture on the shape-memory effect in polycrystals. Acta. Mater. 46 (1998) 5457-5473.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site