Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Foias, Ciprian; Jolly, Michael S.; Manley, Oscar P.
Limiting behavior for an iterated viscosity. ESAIM : Modélisation Mathématique et Analyse Numérique, 34 no. 2 (2000), p. 353-376
Texte intégral djvu | pdf | Analyses MR 1765664 | Zbl 0962.76022

URL stable: http://www.numdam.org/item?id=M2AN_2000__34_2_353_0

Bibliographie

[1] P. Constantin and C. Foias, Navier-Stokes Equations, Univ. Chicago Press, Chicago, IL (1988).  MR 972259 |  Zbl 0687.35071
[2] N. Dunford and J. T. Schwartz, Book Linear Operators, Wiley, New York (1958) Part II.  Zbl 0084.10402
[3] C. Foias, What do the Navier-Stokes equations tell us about turbulence? in Harmonic analysis and nonlinear differential equations (Riverside, CA, 1995). Contemp. Math. 208 (1997) 151-180.  MR 1467006 |  Zbl 0890.76030
[4] C. Foias, O. P. Manley and R. Temam, Modelling of the interaction of small and large eddies in two-dimensional turbulent flows. RAIRO Modél. Math. Anal. Numér. 22 (1988) 93-118.
Numdam |  MR 934703 |  Zbl 0663.76054
[5] C. Foias, O. P. Manley and R. Temam, Approximate inertial manifolds and effective viscosity in turbulent flows. Phys. Fluids A 3 (1991) 898-911.  MR 1205478 |  Zbl 0732.76001
[6] C. Foias, O. P. Manley and R. Temam, Iterated approximate inertial manifolds for Navier-Stokes equations in 2-D. J. Math. Anal. Appl. 178 (1994) 567-583.  MR 1238896 |  Zbl 0806.76015
[7] C. Foias, O. P. Manley, R. Temam and Y. M. Treve, Asymptotic analysis of the Navier-Stokes equations. Phys. D 9 (1983) 157-188.  MR 732571 |  Zbl 0584.35007
[8] C. Foias and B. Nicolaenko, On the algebra of the curl operator in the Navier-Stokes equations (in preparation).
[9] R. H. Kraichnan, Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (1967) 417-1423.
[10] W. Heisenberg, On the theory of statistical and isotropic turbulence. Proc. Roy.Soc. Lond. Ser. A. 195 (1948) 402-406.  MR 30851 |  Zbl 0035.25605
[11] E. Hopf, A mathematical example displaying features of turbulence. Comm. Appl. Math. 1 (1948) 303-322.  MR 30113 |  Zbl 0031.32901
[12] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd édition, Springer-Verlag, New York (1997).  MR 1441312 |  Zbl 0871.35001
[13] T. von Karman, Tooling up mathematics for engineering. Quarterly Appl. Math. 1 (1943) 2-6.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site