Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Hebeker, Friedrich Karl
A domain splitting method for heat conduction problems in composite materials. ESAIM : Modélisation Mathématique et Analyse Numérique, 34 no. 1 (2000), p. 47-62
Texte intégral djvu | pdf | Analyses MR 1735977 | Zbl 0952.65070

URL stable: http://www.numdam.org/item?id=M2AN_2000__34_1_47_0

Bibliographie

[1] H. Blum, S. Lisky and R. Rannacher, A domain splitting algorithm for parabolic problems. Computing 49 (1992) 11-23.  MR 1182439 |  Zbl 0767.65073
[2] D. Braess, W. Dahmen and Chr. Wieners, A multigrid algorithm for the mortar finite element method. SIAM J. Numer. Anal. 37 (1999) 48-69.  MR 1721260 |  Zbl 0942.65139
[3] H. Chen and R.D. Lazarov, Domain splitting algorithm for mixed finite element approximations to parabolic problems. East-West J. Numer. Math. 4 (1996) 121-135.  MR 1403647 |  Zbl 0878.65081
[4] Z. Chen and J. Zou, Finite element methods and their convergence analysis for elliptic and parabolic interface problems. Numer. Math. 79 (1998) 175-202.  MR 1622502 |  Zbl 0909.65085
[5] W. Hackbusch, Theorie und Numerik elliptischer Differentialgleichungen. Teubner, Stuttgart (1986).  MR 1600003 |  Zbl 0609.65065
[6] W. Hackbusch and S. Sauter, Composite finite elements for the approximation of PDEs on domains with complicated microstructures. Numer. Math. 75 (1997) 447-472.  MR 1431211 |  Zbl 0874.65086
[7] H. Haller, Composite materials of shape-memory alloys: micromechanical modelling and homogenization (in German). Ph.D. thesis, Technische Universitàt München (1997).
[8] F.H. Hebeker, An a posteriori error estimator for elliptic boundary and interface problems. Preprint 97-46 (SFB 359), Universität Heidelberg (1997); submitted.
[9] F.K. Hebeker, Multigrid convergence analysis for elliptic problems arising in composite materials (in preparation).
[10] F.K. Hebeker and Yu.A. Kuznetsov, Unsteady convection and convection-diffusion problems via direct overlapping domain decomposition methods. Preprint 93-54 (SFB 359), Universität Heidelberg, 1993; Numer. Methods Partial Differential Equations 14 (1998) 387-406.  MR 1621378 |  Zbl 0919.65058
[11] K.H. Hoffmann and J. Zou, Finite element analysis on the Lawrence-Doniach model for layered superconductors. Numer. Funct. Anal. Optim. 18 (1997) 567-589.  MR 1467663 |  Zbl 1114.65349
[12] J. Jäger, An overlapping domain decomposition method to parallelize the solution of parabolic differential equations (in German). Ph.D. thesis, Universität Heidelberg (1994).  Zbl 0801.65094
[13] C. Kober, Composite materials of shape-memory alloys: modelling as layers and numerical simulation (in German). Ph.D. thesis, Technische Universität München (1997).
[14] Yu.A. Kuznetsov, New algorithms for approximate realization of implicit difference schemes. Sov. J. Numer. Anal. Modell. 3 (1988) 99-114.  MR 925822 |  Zbl 0825.65066
[15] Yu.A. Kuznetsov, Domain decomposition methods for unsteady convection diffusion problems. Comput. Methods Appl. Sci. Engin. (Proceedings of the Ninth International Conference, Paris 1990) SIAM, Philadelphia (1990) 211-227.  MR 1102024 |  Zbl 0744.65063
[16] Yu.A. Kuznetsov, Overlapping domain decomposition methods for finite element problems with singular perturbed operators. in Domain decomposition Methods for Partial differential equations, R. Glowinski et al. Eds., SIAM, Philadelphia. Proc. of the 4th Intl. Symp. (1991) 223-241.  MR 1106465 |  Zbl 0766.65089
[17] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, Berlin etc. (1994).  MR 1299729 |  Zbl 0803.65088
[18] R. Rannacher and J. Zhou, Analysis of a domain splitting method for nonstationary convection-diffusion problems. East-West J. Numer. Math. 2 (1994) 151-172.  MR 1281036 |  Zbl 0836.65100
[19] J. Wloka, Partielle Differentialgleichungen. Teubner, Stuttgart (1982).  MR 652934 |  Zbl 0482.35001
Copyright Cellule MathDoc 2014 | Crédit | Plan du site