Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Axelsson, O.; Layton, W.
Defect correction methods for convection dominated convection-diffusion problems. RAIRO - Modélisation mathématique et analyse numérique, 24 no. 4 (1990), p. 423-455
Texte intégral djvu | pdf | Analyses MR 1070965 | Zbl 0705.65081

URL stable: http://www.numdam.org/item?id=M2AN_1990__24_4_423_0

Bibliographie

[1] O. AXELSSON, On the numencal solution of convection dominated, convection-diffusion problems, in : Math. Meth. Energy Res. (K. I. Gross, ed. ), SIAM,Philadelphia, 1984.  MR 790509 |  Zbl 0551.76077
[2] O. AXELSSON, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I. M. A. J. Numer. Anal., 1 (1981), 329-345.  MR 641313 |  Zbl 0508.76069
[3] W. ECKHAUS, Boundary layers in linear elliptic singular perturbation problems, SIAM Review, 14 (1972), 225-270.  MR 600325 |  Zbl 0234.35009
[4] V. ERVIN andW. LAYTON, High resolution minimal storage algorithms for convection dommated, convection diffusion equations, pp 1173-1201 in Tiams : of the Fourth Arms Conf. on Appl. Math. and Comp., 1987.  MR 905115 |  Zbl 0625.76095
[5] V. ERVIN andW. LAYTON, An analysis of a defect correction method for a model convection diffusion equations, SIAM J. N. A. 26 (1989) 169-179.  MR 977954 |  Zbl 0672.65063
[6] P. W. HEMKER, Mixed defect correction iteration for the accurate solution of the convection diffusion equation, pp 485-501 in : Multigrid Methods, L. N. M. vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982.  MR 685785 |  Zbl 0505.65047
[7] P. W. HEMKER, The use of defect correction for the solution of a singularly perturbed o.d.e., preprint. CWI, Amsterdam, 1983.  Zbl 0504.65050
[8] C. JOHNSON and U. NÄVERT, An analysis of some finite element methods for advection diffusion problems, in : Anal. and Numer. Approaches to Asym. Probs. in Analysis (O. Axelson, L. S. Frank and A. van der Sluis, eds.) North Holland, 1981, 99-116.  MR 605502 |  Zbl 0455.76081
[9] C. JOHNSON and U. NÄVERT andJ. PITKARANTA, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Eng., 45 (1984), 285-312.  MR 759811 |  Zbl 0526.76087
[10]C. JOHNSON and A. H. SCHATZ and L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49 (1987), 25-38.  MR 890252 |  Zbl 0629.65111
[11] C. MIRANDA, Partial differential equations of elliptic type, Springer Verlag, Berlin, 1980.  MR 284700 |  Zbl 0198.14101
[12] U. NÄVERT, A finite element method for convection diffusion problems, Ph. D. Thesis, Chalmers Inst. of Tech., 1982.
[13] A. H. SCHATZ and L. WAHLBTN, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), pp 47-89.  MR 679434 |  Zbl 0518.65080
Copyright Cellule MathDoc 2014 | Crédit | Plan du site