Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Guillopé, C.; Saut, J.-C.
Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type. RAIRO - Modélisation mathématique et analyse numérique, 24 no. 3 (1990), p. 369-401
Texte intégral djvu | pdf | Analyses MR 1055305 | Zbl 0701.76011 | 3 citations dans Numdam

URL stable: http://www.numdam.org/item?id=M2AN_1990__24_3_369_0

Bibliographie

[1] G. ASTARITA, G. MARRUCCI, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London, 1974.
[2] C. GUILLOPÉ, J. C. SAUT, Résultats d'existence pour des fluides viscoélastiques à loi de comportement de type différentiel. C.R. Acad. Sci. Paris, 305, série I (1987), 489-492, and article to appear in Nonlinear An., T.M.A.  MR 916317 |  Zbl 0624.76008
[3] P. HENRICI, Applied and Computational Complex Analysis, vol. I, John Wiley, New York, 1974.  MR 372162 |  Zbl 0313.30001
[4] G. IOOSS, Bifurcation et stabilité, Publications Mathématiques d'Orsay, 1973.
Article |  MR 487634
[5] D. D. JOSEPH, Stability of Fluid Motions, vol. I and II, Springer, Berlin-Heidelberg-New York, 1976.  Zbl 0345.76023
[6] T. KATO, Perturbation Theory for Linear Operators, Springer, Berlin-Heidel-berg-New York, 1966.  MR 203473 |  Zbl 0148.12601
[7] R. W. KOLKKA, G. R. IERLEY, M. G. HANSEN,R. A. WORTHING, On the stability of viscoelastic parallel shear flows, Technical Report, F.R.O.G., Michigan Technological University, 1987.
[8] R. W. KOLKKA, D. S. MALKUS, M. G. HANSEN,G. R. IERLEY, R. A. WORTHING, Spurt phenomena of the Johnson-Segalman fluid and related models, J. Non-Newt. Fl. Mech., 29 (1988), 303-335.
[9] J. G. OLDROYD, On the formulation of rheological equations of state, Proc. Roy. Soc. London, A 200 (1950), 523-541.  MR 35192
[10] G. PRODI, Theoremi di tipo locale per il sistema di Navier-Stokes e la stabilita delle soluzione stazionarie, Rend. Sem. Univ. Padova, 32 (1962), 374-397.
Numdam |  MR 189354 |  Zbl 0108.28602
[11] M. RENARDY, W. J. HRUSA, J. A. NOHEL, Mathematical Problems in Viscoelasticity, Longman, New York, 1987.  MR 919738 |  Zbl 0719.73013
[12] D. H. SATTINGER, Topics in Stability and Bifurcation Theory, Lectures Notes in Mathematics, 309, Springer, Berlin-Heidelberg-New York, 1973.  MR 463624 |  Zbl 0248.35003
[13] W. R. SCHOWALTER, Behavior of complex fluids at solid boundaries, J. Non-Newt. Fl. Mech., 29 (1988), 85.
[14] J. YERUSHALMI, S. KATZ, R. SHINNAR, The stability of steady shear flows of some viscoelastic fluids, Chem. Eng. Sc., 25 (1970), 1891-1902.
[15] J. K. HUNTER, M. SLEMROD, Viscoelastic fluid flow exhibiting hysteritic phase changes, Phys. Fluids 26 (1983), 2345-2351.  Zbl 0529.76009
[16] D. S. MALKUS, J. A. NOHEL, B. J. PLOHR, Time-dependent shear flow of a non-Newtonian fluid, in Contemporary Mathematics, vol. 100, ed. W. B. Lindquist, A.M.S. (1989), 91-110.  MR 1033511 |  Zbl 0683.76003
Copyright Cellule MathDoc 2014 | Crédit | Plan du site