Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Bonnans, Joseph Frédéric
Théorie de la pénalisation exacte. RAIRO - Modélisation mathématique et analyse numérique, 24 no. 2 (1990), p. 197-210
Texte intégral djvu | pdf | Analyses MR 1052147 | Zbl 0752.65051

URL stable: http://www.numdam.org/item?id=M2AN_1990__24_2_197_0

Bibliographie

[1] M. S. BAZARAA,J. J. GOODE, Sufficient conditions for a globally exact penalty function without convexity, Math. Programming Study 19, 1-15, 1982.  MR 669723 |  Zbl 0497.90058
[2] A. BEN-TAL, Second order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31, 143-165, 1980.  MR 600379 |  Zbl 0416.90062
[3] D. P. BERTSEKAS, Necessary and sufficient conditions for a penalty method to be exact, Math. Programming 9, 87-99, 1975.  MR 384144 |  Zbl 0325.90055
[4] D. P. BERTSEKAS, Constrained optimization and Lagrange multiplier methods,Academic Press, New York, 1982.  MR 690767 |  Zbl 0572.90067
[5] J. F. BONNANS, Asymptotic stability of the unit stepsize in exact penalty methods,SIAM J. Cont. Optimiz. 27, 631-641, 1989.  MR 993290 |  Zbl 0678.90068
[6] J. F. BONNANS, Augmentability and exact penalisability in nonlinear programming under a weak second-order sufficiency condition, in rapport INRIA n° 548, 1986.
[7] J. F. BONNANS, D. GABAY, Une extension de la programmation quadratique successive, in « Lecture notes in control and information sciences n° 63 », A. Bensoussan et J. L. Lions ed., 16-31, Springer Verlag, Berlin, 1984.  MR 876712 |  Zbl 0559.90081
[8] J. F. BONNANS,G. LAUNAY, On the stability of sets defined by a finite number of equalities and inequalities, soumis au J. Opt. Th. Appl.  Zbl 0794.93096
[9] C. CHARALAMBOUS, A lower bound for the controlling parameters of the exact penalty functions, Math. Programming 15, 278-290, 1978.  MR 514613 |  Zbl 0395.90071
[10] F. H. CLARKE, A new approach to Lagrange multipliers, Math. Oper. Res. 2, 165-174, 1976.  MR 414104 |  Zbl 0404.90100
[11] S. P. HAN, A global convergent method for nonlinear programming, J. Optim. Theory Appl. 22, 297-309, 1977.  MR 456497 |  Zbl 0336.90046
[12] S. P. HAN,O. L. MANGASARIAN, Exact penalty functions in nonlinear programming, Math. Programming 17, 251-269, 1979.  MR 550845 |  Zbl 0424.90057
[13] M. R. HESTENES, Optimization theory : the finite dimensional case, J. Wiley & Sons, New York, 1975.  MR 461238 |  Zbl 0327.90015
[14] A. D. IOFFE, Necessary and sufficient conditions for a local minimum 1 : A reduction theorem and first order conditions, SIAM J. Control Opt. 17, 245-250, 1979.  MR 525025 |  Zbl 0417.49027
[15] G. P. MACCORMICK, Second order conditions for constrained minima, SIAM J. Applied Math. 15, 641-652, 1967.  MR 216866 |  Zbl 0166.15601
[16] O. L. MANGASARIAN,M. FROMOVITZ, The Fritz-John necessary optimality condition in the presence of equality and inequality constraints, J. Math. Anal. Appl. 7, 37-47, 1967.  MR 207448 |  Zbl 0149.16701
[17] J. P. PENOT, A new constraint qualification condition, J. Optim. Th. Appl. 48,459-468, 1986.  MR 833007 |  Zbl 0562.90078
[18] T. PIETRZYKOWSKI, An exact potential method for constrained maxima, SIAM J. Numer. Anal. 2, 299-304, 1969.  MR 245183 |  Zbl 0181.46501
[19] B. PSCHENICHNYI,Y. DANILINE, Méthodes numériques dans les problèmes d'extrémum, Mir, Moscou, 1965 (édition française : 1977).  Zbl 0389.65027
[20] S. M. ROBINSON, Stability theory for Systems of inequalities, part II : differentiable nonlinear Systems, SIAM J. Numerical Analysis 13, 497-513, 1976.  MR 410522 |  Zbl 0347.90050
[21] R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press, Princeton, New Jersey, 1970.  Zbl 0193.18401
[22] R. T. ROCKAFELLAR, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12, 268-285, 1974.  MR 384163 |  Zbl 0257.90046
[23] E. ROSENBERG, Exact penalty functions and stability in locally Lipschitz programming, Math. Programming 30, 340-356, 1984.  MR 769237 |  Zbl 0587.90083
Copyright Cellule MathDoc 2014 | Crédit | Plan du site