Recherche et téléchargement d’archives de revues mathématiques numérisées

  Table des matières de ce fascicule | Article précédent | Article suivant
Carnevali, P.; Radicati, G.; Robert, Y.; Sguazzero, P.
Efficient FORTRAN implementation of the gaussian elimination and Householder reduction algorithms on the IBM 3090 vector multiprocessor. RAIRO - Modélisation mathématique et analyse numérique, 23 no. 1 (1989), p. 63-86
Texte intégral djvu | pdf | Analyses Zbl 0671.65023

URL stable:


[BGH 86] M. BERRY, K. GALLIVAN, W. HARROD, W. JALBY, S.Lo, U.MEIER, B.PHILIPPE and A. H.SAMEH, Parallel algorithms on the CEDAR System, in CONPAR 86 (G. Goos and J. Hartmanis eds.) pp. 25-39, Lecture Notes in Computer Science 237, Springer Verlag (1986).
[BV 85] C. BiSCHOFF and C. VAN LOAN, The WY représentationfor products of Householder matrices, Cornell University, Report DCS-85-681 (1985).  Zbl 0628.65033
[Buc 86] W. BUCHHOLZ, The IBM System/370 vector architecture, IBM Systems Journal 25, 1 (1986) pp. 51-62.
[CMRT 86] M. COSNARD, M. MARRAKCHI, Y. ROBERT and D. TRYSTRAM, Gaussian élimination algorithms for MIMD computers, in CONPAR 86 (G.Goos and J. Hartmanis eds.) pp. 247-254, Lecture Notes in Computer Science 237, Springer Verlag (1986).  Zbl 0608.65017
[DD 85] C. DALY and J. J. DUCROZ, Performance of a subroutine library on vector processing machines, Computer Physics Communications 37 (1985) pp. 181-186.  MR 817064
[Don 84] J. J. DONGARRA, Performance of various computers using Standard linear equations software in a Fortran environment, Argonne National Laboratory Report MCA-TM-23 (1984, updated December 1986).
[DE 84] J. J. DONGARRAand S. C. EISENSTAT, Squeezing the most out of an algorithm in Cray Fortran, ACM Trans. Math. Software 10, 3 (1984) pp. 221-230.  MR 791988
[DGK 84] J. J. DONGARRA, F. G. GUSTAVSON and A. KARP, Implementing linear algebra algorithms for dense matrices on a vector pipeline machine, SI AM Review 12, 1 (1984) pp. 91-112.  MR 735077 |  Zbl 0539.65009
[DH 79] J. J. DONGARRA and A. R. HINDS, Unrolling loops in Fortran, Software -Practice and Expérience 9 (1979) pp. 219-229.  Zbl 0393.68011
[DS 86] J. J. DONGARRA and D. C. SORENSEN, Linear algebra on high-performance computers, in Parallel Computing 85 (M. Feilmeier et al. eds.), pp. 221-230, Elsevier Science Publishers B. V. (1986).  MR 852444 |  Zbl 0628.65016
[ESSL 86] Engineering and Scientific Subroutine Library, Order No. SC23-0184-0, available through IBM branch offices (1986).
[FORT 86] VS FORTRAN Version 2 Programming Guide (Release 1.1), Order No. SC26-4222-1, available through IBM branch offices (1986).
[GV 83] G. H. GOLUB and C. F. VAN LOAN, Matrix computations, The John Hopkins University Press (Baltimore, MA, 1983).  MR 733103 |  Zbl 0559.65011
[LHKK 79] C. LAWSON, R. HANSON, D. KINCAID and F. KROGH, Basic linear algebras subprograms for Fortran usage, ACM Trans. Math. Software 5 (1979)algebras subp pp. 308-371.  Zbl 0412.65022
[LKK 83] R. E. LORD, J. S. KOWALIK and S. P. KUMAR, Solving linear algebraic equations on an MIMD computer, J. ACM 30, 1 (1983) pp. 103-117.  MR 694482 |  Zbl 0502.65017
[RS 86] Y. ROBERT and P. SGUAZZERO, The LU décomposition algorithm and its efficient FORTRAN implementation on the IBM 3090 vector multiprocessor, IBM ECSEC Technical Report (March 1987).
[Tuc 86] S. G. TUCKER, The IBM 3090 system : an overview, IBM Systems Journal 25, 1 (1986) pp. 4-19.
[VECT 86] IBM System/370 Vector Opérations, Order No. SA22-7125-0, available through IBM branch offices (1986).
Copyright Cellule MathDoc 2016 | Crédit | Plan du site