Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Geveci, Tunc; Reddy, B. Daya; Pearce, Howard T.
On the approximation of the spectrum of the Stokes operator. RAIRO - Modélisation mathématique et analyse numérique, 23 no. 1 (1989), p. 129-136
Texte intégral djvu | pdf | Analyses MR 1015922 | Zbl 0683.65095

URL stable: http://www.numdam.org/item?id=M2AN_1989__23_1_129_0

Bibliographie

[1] K. J. BATHE, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, Englewood Cliffs, N.J.
[2] M. BERCOVIER, Perturbation of mixed variational problems : Application to mixed finite element methods, R.A.I.R.O. Anal. Num. 12 (1978), 211-236.
Numdam |  MR 509973 |  Zbl 0428.65059
[3] C. CANUTO, Eigenvalue approximation by mixed methods, R.A.I.R.O. Anal. Num. 12 (1978), 25-50.
Numdam |  MR 488712 |  Zbl 0434.65032
[4] C. CANUTO, A hybrid finite element to compute the free vibration frequencies of a clamped plate, R.A.I.R.O. Anal. Num. 15 (1981), 101-118.
Numdam |  MR 618818 |  Zbl 0462.73049
[5] V. GIRAULT and P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, 1979, New York, Heidelberg, Berlin.  MR 548867 |  Zbl 0413.65081
[6] D. F. GRIFFITHS, Finite elements for incompressible flow, Math. Meth. in the Appl. Sci. 1 (1979), 16-31.  MR 548403 |  Zbl 0425.65061
[7] D. F. GRIFFITHS, An approximately divergence-free 9-node velocity element (with variations) for incompressible flows, Int. J. Num. Meth. Fluids 1 (1981), 323-346.  MR 633811 |  Zbl 0469.76026
[8] B. MERCIER, J. OSBORN, J. RAPPAZ and P.-A. RAVIART, Eigenvalue approximation of mixed and hybrid methods, Math. Compt. 36 (1981), 427-453.  MR 606505 |  Zbl 0472.65080
[9] J. T. ODEN, N. KIKUCHI and Y. J. SONG, Penalty-finite element methods for the analysis of Stokesian flows, Comp. Meth. Appl. Mech. Eng. 31 (1982), 297-239.  MR 677872 |  Zbl 0478.76041
[10] J. S. PETERSON, An application of mixed finite element methods to the stability of the incompressible Navier-Stokes equations, SIAM J. Sci. Stat. Comput. 4 (1983), 626-634.  MR 725657 |  Zbl 0526.76039
[11] G. STRANG and G. F. FIX, An Analysis of the Finite Element Method, Prentice-Hall, 1973, Englewood Cliffs, N.J.  MR 443377 |  Zbl 0356.65096
[12] R. TEMAM, Navier-Stokes Equations, North-Holland, 1979, Amsterdam, New York, Oxford.  Zbl 0426.35003
[13] R. TEMAM, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 1983, Philadelphia.  MR 764933 |  Zbl 0833.35110
[14] F. THOMASSET, Implementation of the Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, 1981, New York, Heidelberg, Berlin.  MR 720192 |  Zbl 0475.76036
Copyright Cellule MathDoc 2014 | Crédit | Plan du site