Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Cohen, Henri; Diaz y Diaz, Francisco; Olivier, Michel
Counting discriminants of number fields. Journal de théorie des nombres de Bordeaux, 18 no. 3 (2006), p. 573-593
Texte intégral djvu | pdf | Analyses MR 2330428 | Zbl pre05186992

URL stable: http://www.numdam.org/item?id=JTNB_2006__18_3_573_0

Voir cet article sur le site de l'éditeur

Résumé

Pour tout groupe de permutations transitif sur $n$ lettres $G$ avec $n\le 4$ nous donnons sans démonstration des résultats, des conjectures et des calculs numériques sur le nombre de discriminants de corps de nombres $L$ de degré $n$ sur $\mathbb{Q}$ tels que le groupe de Galois de la clôture galoisienne de $L$ soit isomorphe à $G$.

Bibliographie

[1] A. Baily, On the density of discriminants of quartic fields. J. reine angew. Math. 315 (1980), 190210.  MR 564533 |  Zbl 0421.12007
[2] K. Belabas, A fast algorithm to compute cubic fields. Math. Comp. 66 (1997), 12131237.  MR 1415795 |  Zbl 0882.11070
[3] K. Belabas, On quadratic fields with large $3$-rank. Math. Comp. 73 (2004), 20612074.  MR 2059751 |  Zbl 1051.11055
[4] K. Belabas, M. Bhargava, C. Pomerance, Error estimates for the Davenport–Heilbronn theorems. Preprint available at http://www.math.u-bordeaux1.fr/~belabas/pub/
[5] M. Bhargava, Higher Composition Laws I, II, III, IV.  Zbl 1072.11078
[6] H. Cohen, A course in computational algebraic number theory (fourth printing). GTM 138, Springer-Verlag, 2000.  MR 1228206 |  Zbl 0786.11071
[7] H. Cohen, Advanced topics in computational number theory. GTM 193, Springer-Verlag, 2000.  MR 1728313 |  Zbl 0977.11056
[8] H. Cohen, Comptage exact de discriminants d’extensions abéliennes. J. Th. Nombres Bordeaux 12 (2000), 379397.
Numdam |  Zbl 0976.11055
[9] H. Cohen, Enumerating quartic dihedral extensions of $\mathbb{Q}$ with signatures. Ann. Institut Fourier 53 (2003) 339377.
Numdam |  MR 1990000 |  Zbl 01940698
[10] H. Cohen, High precision computation of Hardy-Littlewood constants. Preprint available on the author’s web page at the URL http://www.math.u-bordeaux.fr/~cohen.
[11] H. Cohen, Counting $A_4$ and $S_4$ extensions of number fields with given resolvent cubic, in “High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams”. Fields Institute Comm. 41 (2004), 159168.  Zbl 02154279
[12] H. Cohen, Constructing and counting number fields. Proceedings ICM 2002 Beijing vol II, Higher Education Press, China (2002), 129138.  MR 1957027 |  Zbl 1042.11067
[13] H. Cohen, F. Diaz y Diaz, M. Olivier, Enumerating quartic dihedral extensions of $\mathbb{Q}$. Compositio Math. 133 (2002), 6593.  MR 1918290 |  Zbl 1050.11104
[14] H. Cohen, F. Diaz y Diaz, M. Olivier, Construction of tables of quartic fields using Kummer theory. Proceedings ANTS IV, Leiden (2000), Lecture Notes in Computer Science 1838, Springer-Verlag, 257268.  MR 1850610 |  Zbl 0987.11079
[15] H. Cohen, F. Diaz y Diaz, M. Olivier, Constructing complete tables of quartic fields using Kummer theory. Math. Comp. 72 (2003) 941951.  MR 1954977 |  Zbl 1081.11081
[16] H. Cohen, F. Diaz y Diaz, M. Olivier, Densité des discriminants des extensions cycliques de degré premier. C. R. Acad. Sci. Paris 330 (2000), 6166.  MR 1745187 |  Zbl 0941.11042
[17] H. Cohen, F. Diaz y Diaz, M. Olivier, On the density of discriminants of cyclic extensions of prime degree. J. reine angew. Math. 550 (2002), 169209.  MR 1925912 |  Zbl 1004.11063
[18] H. Cohen, F. Diaz y Diaz, M. Olivier, Cyclotomic extensions of number fields. Indag. Math. (N.S.) 14 (2003), 183196.  MR 2026813 |  Zbl 1056.11058
[19] H. Cohn, The density of abelian cubic fields. Proc. Amer. Math. Soc. 5 (1954), 476477.  MR 64076 |  Zbl 0055.26901
[20] B. Datskovsky, D. J. Wright, Density of discriminants of cubic extensions. J. reine angew. Math. 386 (1988), 116138.  MR 936994 |  Zbl 0632.12007
[21] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields I. Bull. London Math. Soc. 1 (1969), 345348.  MR 254010 |  Zbl 0211.38602
[22] H. Davenport, H. Heilbronn, On the density of discriminants of cubic fields II. Proc. Royal. Soc. A 322 (1971), 405420.  MR 491593 |  Zbl 0212.08101
[23] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage. Math. Zeitschrift 31 (1930), 565582.  MR 1545136 |  JFM 56.0167.02
[24] J. Klüners, A counter-example to Malle’s conjecture on the asymptotics of discriminants. C. R. Acad. Sci. Paris 340 (2005), 411414.  Zbl 1083.11069
[25] S. Mäki, On the density of abelian number fields. Thesis, Helsinki, 1985.  MR 791087
[26] S. Mäki, The conductor density of abelian number fields. J. London Math. Soc. (2) 47 (1993), 1830.  MR 1200974 |  Zbl 0727.11041
[27] G. Malle, On the distribution of Galois groups. J. Number Th. 92 (2002), 315329.  MR 1884706 |  Zbl 1022.11058
[28] G. Malle, On the distribution of Galois groups II, Exp. Math. 13 (2004), 129135.
Article |  MR 2068887 |  Zbl 1099.11065
[29] G. Malle, The totally real primitive number fields of discriminant at most $10^9$. Proceedings ANTS VII (Berlin), 2006, Springer Lecture Notes in Computer Science XXX.  MR 2282919
[30] D. Roberts, Density of cubic field discriminants. Math. Comp. 70 (2001), 16991705.  MR 1836927 |  Zbl 0985.11068
[31] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés SMF 1, Société Mathématique de France, 1995.  MR 1366197 |  Zbl 0880.11001
[32] D. J. Wright, Distribution of discriminants of Abelian extensions. Proc. London Math. Soc. (3) 58 (1989), 1750.  MR 969545 |  Zbl 0628.12006
[33] D. J. Wright, personal communication.
[34] D. J. Wright, A. Yukie, Prehomogeneous vector spaces and field extensions. Invent. Math. 110 (1992), 283314.  MR 1185585 |  Zbl 0803.12004
Copyright Cellule MathDoc 2014 | Crédit | Plan du site