Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Galbraith, Steven D.
Rational points on $X_0^+ (N)$ and quadratic $\mathbb {Q}$-curves. Journal de théorie des nombres de Bordeaux, 14 no. 1 (2002), p. 205-219
Texte intégral djvu | pdf | Analyses MR 1925998 | Zbl 1035.14008

URL stable: http://www.numdam.org/item?id=JTNB_2002__14_1_205_0

Voir cet article sur le site de l'éditeur

Résumé

Nous considérons les points rationnels sur $X_0(N)/W_N$ dans le cas où $N$ est un nombre composé. Nous faisons une étude de certains cas qui ne se déduisent pas des résultats de Momose. Des points rationnels sont obtenus pour $N = 91$ et $N = 125$. Nous exhibons aussi les $j$-invariants des $\mathbb{Q}$-courbes quadratiques correspondantes.

Bibliographie

[1] A.O.L. Atkin, J. Lehner, Hecke Operators on Γ0(N), Math. Ann. 185 (1970), 134-160.  Zbl 0177.34901
[2] B.J. Birch, Heegner points of elliptic curves, AMS Symp. math. 15 (1975), Inf. teor., Strutt. Corpi algebr., Convegni 1973, 441-445.  MR 384805 |  Zbl 0317.14015
[3] H. Cohen, N.-P. Skoruppa, D. Zagier, Tables of modular forms. Preprint, 1992.
[4] J.E. Cremona, Algorithms for modular elliptic curves. Cambridge (1992)  MR 1201151 |  Zbl 0758.14042
[5] P. Deligne, M. Rappoport, Les schemas de modules de courbes elliptiques. In Modular Functions one Variable II, Springer Lecture Notes Math. 349 (1973), 143-316.  MR 337993 |  Zbl 0281.14010
[6] N. Elkies, Remarks on elliptic K-curves, preprint, 1993.
[7] N. Elkies, Elliptic and modular curves over finite fields and related computational issues. In D. A. Buell and J. T. Teitelbaum (eds.), Computational Perspectives on Number Theory, AMS Studies in Advanced Math., 1998, 21-76.  MR 1486831 |  Zbl 0915.11036
[8] S.D. Galbraith, Equations for Modular Curves. Doctoral Thesis, Oxford, 1996.
[9] S.D. Galbraith, Rational points on X0+(p). Experiment. Math. 8 (1999), 311-318.
Article |  MR 1737228 |  Zbl 0960.14010
[10] S.D. Galbraith, Constructing isogenies between elliptic curves over finite fields. London Math. Soc. J. Comp. Math. 2 (1999), 118-138.  MR 1728955 |  Zbl 1018.11028
[11] J. González, Equations of hyperelliptic modular curves. Ann. Inst. Fourier bf41 (1991), 779-795.
Numdam |  MR 1150566 |  Zbl 0758.14010
[12] J. González, J.-C. Lario, Rational and elliptic parametrizations of Q-curves. J. Number Theory 72 (1998), 13-31.  MR 1643280 |  Zbl 0932.11037
[13] J. González, On the j-invariants of the quadratic Q-curves. J. London Math. Soc. 63 (2001), 52-68.  MR 1801716 |  Zbl 1010.11028
[14] B.H. Gross, Arithmetic on elliptic curves with complex multiplication. Lect. Notes Mathematics 776, Springer, 1980.  MR 563921 |  Zbl 0433.14032
[15] B.H. Gross, Heegner Points on X0(N). In Modular Forms, R. A. Rankin (ed.), Wiley, 1984, 87-105.  MR 803364 |  Zbl 0559.14011
[16] B.H. Gross, D.B. Zagier, On singular moduli. J. Reine Angew. Math. 355 (1985), 191-220.  MR 772491 |  Zbl 0545.10015
[17] Y. Hasegawa, Table of quotient curves of modular curves X0(N) with genus 2. Proc. Japan Acad. Ser. A 71 (1995), 235-239.
Article |  MR 1373390 |  Zbl 0873.11040
[18] Y. Hasegawa, Q-curves over quadratic fields. Manuscripta Math. 94 (1997), 347-364.
Article |  MR 1485442 |  Zbl 0909.11017
[19] M.A. Kenku, On the Modular Curves X0(125), X0(25) and X0(49). J. London Math. Soc. 23 (1981), 415-427.  MR 616546 |  Zbl 0425.14006
[20] S. Lang, Elliptic Functions, 2nd edition. Springer GTM 112, 1987.  MR 890960 |  Zbl 0615.14018
[21] B. Mazur, Modular Curves and the Eisenstein Ideal. Pub. I.H.E.S, 47 (1977), 33-186.
Numdam |  MR 488287 |  Zbl 0394.14008
[22] F. Momose, Rational Points on X0+(p r). J. Faculty of Science University of Tokyo Section 1A Mathematics 33 (1986), 441-466.  MR 866046 |  Zbl 0621.14018
[23] F. Momose, Rational Points on the Modular Curves X +0(N). J. Math. Soc. Japan 39 (1987), 269-285.
Article |  MR 879929 |  Zbl 0623.14009
[24] N. Murabayashi, On normal forms of modular curves of genus 2. Osaka J. Math. 29 (1992), 405-418.  MR 1173998 |  Zbl 0774.14025
[25] A. Ogg, Rational Points on Certain Elliptic Modular Curves. In H. Diamond (ed.), AMS Proc. Symp. Pure Math. 24, 1973, 221-231.  MR 337974 |  Zbl 0273.14008
[26] A. Ogg, Hyperelliptic Modular Curves. Bull. Soc. Math. France 102 (1974), 449-462.
Numdam |  Zbl 0314.10018
[27] K. Ribet, Abelian varieties over Q and modular forms. Proceedings of KAIST workshop (1992), 53-79.
[28] M. Shimura, Defining equations of modular curves X0(N). Tokyo J. Math. 18 (1995), 443-456.  Zbl 0865.11052
Copyright Cellule MathDoc 2014 | Crédit | Plan du site