Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Head, Tom
The topologies of sofic subshifts have computable Pierce invariants. Informatique théorique et applications, 25 no. 3 (1991), p. 247-254
Texte intégral djvu | pdf | Analyses MR 1119043 | Zbl 0734.68058

URL stable: http://www.numdam.org/item?id=ITA_1991__25_3_247_0

Bibliographie

1. F. BLANCHARD and G. HANSEL, Languages and Subshifts, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 138-146, Lectures Notes in Comput. Sci., 192, Springer-Verlag, 1985.  MR 814739 |  Zbl 0571.68059
2. L. BOASSON and M. NIVAT, Adherences of Languages, J. Comput. Syst. Sci., 1980, 20, pp. 285-309.  MR 584863 |  Zbl 0471.68052
3. T. HEAD, The Adherences of Languages as Topological Spaces, in M. NIVAT and D. PERRIN Eds., Automata on Infinite Words, pp. 147-163, Lecture Notes in Comput. Sci., 192, Springer-Verlag 1985.  MR 814740 |  Zbl 0571.68057
4. T. HEAD, The Topological Structure of Adherences of Regular Languages, RAIRO, Inform. Théor. Appl., 1986, 20, pp. 31-41.
Numdam |  MR 849963 |  Zbl 0608.68066
5. T. HEAD, The Topological Structure of the Space of Unending Paths of a Graph, Congr. Numer., 1987, 60, pp. 131-140.  MR 945225 |  Zbl 0645.05037
6. R. S. PIERCE, Existence and Uniqueness Theorems for Extensions of Zero-Dimensional Metric Spaces, Trans. Amer. Math. Soc., 1970, 148, pp. 1-21.  MR 254804 |  Zbl 0194.54801
7. R. S. PIERCE, Compact Zero-Dimensional Metric Spaces of Finite Type, Mem. Amer. Math. Soc, No. 130, Providence, Rhode Island, 1972.  MR 357268 |  Zbl 0253.54028
8. B. WEISS, Subshifts of Finite Type and Sofic Systems, Monatsh. Math., 1973, 77, pp. 462-474.  MR 340556 |  Zbl 0285.28021
Copyright Cellule MathDoc 2014 | Crédit | Plan du site