Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Fernández-Cara, Enrique; Guillén, Francisco; Ortega, Rubens R.
Some theoretical results concerning non newtonian fluids of the Oldroyd kind. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sér. 4, 26 no. 1 (1998), p. 1-29
Texte intégral djvu | pdf | Analyses MR 1633055 | Zbl 0914.76006

URL stable: http://www.numdam.org/item?id=ASNSP_1998_4_26_1_1_0

Bibliographie

[1] G. Astarita - G. Marrucci, " Principles of Non-Newtonian Fluid Mechanics", McGraw Hill, New York, 1974.
[2] J. Baranger - D. Sandri, Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds, Numer. Math. 63 (1992), 13-27.
Article |  MR 1182509 |  Zbl 0761.76032
[3] M.J. Crochet - A.R. Davies - K. Walters, " Numerical Simulation of Non-Newtonian Flow", Elsevier, Amsterdam, 1985.  MR 801545 |  Zbl 0583.76002
[4] R. Diperna - P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), 511-547.  MR 1022305 |  Zbl 0696.34049
[5] E. Fernández-Cara - F. Guillén - R.R. Ortega, Existence et unicité de solution forte locale en temps pour des fluides non newtoniens de type Oldroyd (version LS - Lr), C. R. Acad. Sci. Paris. Sér. I Math. 319 (1994), 411-416.  MR 1289322 |  Zbl 0808.76005
[6] A. Friedman, " Partial Differential Equations", Holt- Rinehart-Winston, New York, 1976.  MR 454266 |  Zbl 0224.35002
[7] H. Giesekus, A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration dependent molecular mobility, Rheol. Acta 21 (1982), 366-375.  Zbl 0513.76009
[8] Y. Giga - H. Sohr, Abstract LP estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal. 102 (1991), 72-94.  MR 1138838 |  Zbl 0739.35067
[9] C. Guillopé - J.-C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal. Vol. 15, No. 9, (1990), 849-869.  MR 1077577 |  Zbl 0729.76006
[10] C. Guillopé - J.-C. Saut, Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type, Math. Mod. Numer. Anal. Vol. 24, No. 3, (1990), 369-401.
Numdam |  MR 1055305 |  Zbl 0701.76011
[11] O.A. Ladyzhenskaya, " The Mathematical Theory of Viscous Incompressible Flow", Gordon and Breach, New York, 1969.  MR 254401 |  Zbl 0184.52603
[12] R.G. Larson, A critical comparison of constitutive equations for polymer melts, J. Non-Newtonian Fluid Mech. 23 (1987), 249-269.
[13] J. Leray, Sur le mouvement d'une liquide visqueux emplissant l'espace, Acta Math. 63 (1934), 193-248.  JFM 60.0726.05
[14] J.L. Lions, " Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires ", Dunod, Gauthier-Villars, Paris, 1969.  MR 259693 |  Zbl 0189.40603
[15] J.G. Oldroyd, On the formulation of rheological equations of state, Proc. Roy. Soc. London Ser. A 200 (1950), 523-541.  MR 35192 |  Zbl 1157.76305
[16] J.G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids, Proc. Roy. Soc. London Ser. A 245 (1958), 278-297.  MR 94085 |  Zbl 0080.38805
[17] R.R. Ortega, Thesis, University of Seville (Spain), 1995.
[18] N. Phan Thien - R.I. Tanner, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech. 2 (1977), 353-365.  Zbl 0361.76011
[19] M Renardy, Existence of slow flows of viscoelastic fluids with differential constitutive equations, Z. Angew. Math. Mech. 65 (1985), 449-451.  MR 814684 |  Zbl 0577.76014
[20] M. Renardy - W.J. Hrusa - J.A. Nohel, " Mathematical Problems in Viscoelasticity", Longman, London, 1987.  MR 919738 |  Zbl 0719.73013
[21] D. Sandri, Approximation par éléments finis d'écoulements de fluides viscoélastiques: Existence de solutions approchées et majoration d'erreur II. Contraintes continues, C. R. Acad. Paris Sér. I Math. 313 (1991), 111-114.  MR 1119920 |  Zbl 0737.76048
[22] R. Témam, " Navier-Stokes Equations, Theory and Numerical Analysis", North-Holland, Amsterdam, 1977.  MR 609732 |  Zbl 0383.35057
[23] A. Valli, Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 607-647.
Numdam |  MR 753158 |  Zbl 0542.35062
[24] A. Valli, Navier-Stokes equations for compressible fluids: global estimates and periodic solutions, Proc. Sympos Pure Math. 45 (1986), 467-478.  MR 843633 |  Zbl 0601.35094
[25] K. WALTERS (ed.), " Rheometry: Industrial Applications", J. Wiley and Sons, 1980.
Copyright Cellule MathDoc 2014 | Crédit | Plan du site