Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Bressan, Alberto; Colombo, Rinaldo M.
Decay of positive waves in nonlinear systems of conservation laws. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Sér. 4, 26 no. 1 (1998), p. 133-160
Texte intégral djvu | pdf | Analyses MR 1632980 | Zbl 0906.35059

URL stable: http://www.numdam.org/item?id=ASNSP_1998_4_26_1_133_0

Bibliographie

[1] P. Baiti - A. Bressan, Lower Semicontinuity of Weighted Path Length in BV, In " Geometrical Optics and Related Topics", F. Colombini and N. Lerner (eds.), Birkäuser, 1997.  MR 2033490 |  Zbl 0891.35089
[2] A. Bressan, Global solutions to systems of conservation laws by wave-front tracking, J. Math. Anal. Appl. 170 (1992), 414-432.  MR 1188562 |  Zbl 0779.35067
[3] A. Bressan, " Lecture Notes on Systems of Conservation Laws", S.I.S.S.A., Trieste, 1995.
[4] A. Bressan, The unique limit of the Glimm scheme, Arch. Rational Mech. Anal. 130 (1995), 205-230.  MR 1337114 |  Zbl 0835.35088
[5] A. Bressan, The semigroup approach to systems of conservation laws, Mathematica Contemporanea 10 (1996), 21-74.  MR 1425453 |  Zbl 0866.35064
[6] A. Bressan - R.M. Colombo, The semigroup generated by 2 x 2 conservation laws, Arch. Rational Mech. Anal. 133 (1995), 1-75.  MR 1367356 |  Zbl 0849.35068
[7] A. Bressan - R.M. Colombo, Unique solutions of 2 x 2 conservation laws with large data, Indiana Univ. Math. J. 44 (1995), 677-725.  MR 1375345 |  Zbl 0852.35092
[8] A. Bressan - G. Crasta - B. Piccoli, Well posedness of the Cauchy Problem for n x n systems of conservation laws, preprint S.I.S.S.A., Trieste, 1996.
[9] C.M. Dafermos, Generalized characteristics in hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 107 (1989),127-155.  Zbl 0714.35046
[10] A.F. Filippov, " Differential Equations with Discontinuous Righthand Sides", Kluwer Academic Publisher, Dordrecht, 1988.  Zbl 0664.34001
[11] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), 697-715.  Zbl 0141.28902
[12] P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10 (1957), 537-566.  Zbl 0081.08803
[13] O. Oleinik, Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk. 12 (1957), 3-73; English translation: Amer. Math. Soc. Transl. 26 (1963), 95-172.  Zbl 0131.31803
[14] M. Schatzman, Continuous Glimm functionals and uniquess of solutions of the Riemann problem, Indiana Univ. Math. J. 34 (1985), 533-589.  Zbl 0579.35053
[15] J. Smoller, " Shock Waves and Reaction-Diffusion Equations", Springer-Verlag, New York, 1983.  Zbl 0508.35002
[16] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer.Math. Soc. 280 (1983), 781-795.  Zbl 0559.35046
Copyright Cellule MathDoc 2014 | Crédit | Plan du site