Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Casselman, William; Shahidi, Freydoon
On irreducibility of standard modules for generic representations. Annales scientifiques de l'École Normale Supérieure, Sér. 4, 31 no. 4 (1998), p. 561-589
Texte intégral djvu | pdf | Analyses MR 99f:22028 | Zbl 0947.11022 | 2 citations dans Numdam

URL stable: http://www.numdam.org/item?id=ASENS_1998_4_31_4_561_0

Bibliographie

[1] J. ARTHUR, Intertwining operators and residues I. Weighted characters, (J. Funct. Anal., Vol. 84, 1989, pp. 19-84).  MR 90j:22018 |  Zbl 0679.22011
[2] D. BARBASCH and A. MOY, Whittaker models with an Iwahori fixed vector, Representation theory and analysis on homogeneous spaces, (AMS, Rhode Island 1994, pp. 101-105).  MR 95j:22024 |  Zbl 0854.22019
[3] I. N. BERNSTEIN and A. V. ZELEVINSKY, Induced representations of reductive p-adic groups I, (Ann. Scient. Éc. Norm. Sup., Vol. 10, 1977, pp. 441-472).
Numdam |  MR 58 #28310 |  Zbl 0412.22015
[4] A. BOREL and N. WALLACH, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, (Annals of Math. Studies, Vol. 94, 1980, Princeton University Press, Princeton).  MR 83c:22018 |  Zbl 0443.22010
[5] W. CASSELMAN, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.
[6] W. CASSELMAN, Canonical extensions of Harish-Chandra modules, (Cand. J. Math., Vol. 41, 1989, pp. 315-438).  MR 90j:22013 |  Zbl 0702.22016
[7] W. CASSELMAN, Letter to Harish-Chandra, November 1982.
[8] W. CASSELMAN and J.A. SHALIKA, The unramified principal series of p-adic groups II, The Whittaker function, (Comp. Math., Vol. 41, 1980, pp. 207-231).
Numdam |  MR 83i:22027 |  Zbl 0472.22005
[9] J. W. COGDELL and I. I. PIATETSKI-SHAPIRO, Converse theorems for GLn, (Publ. Math. I.H.E.S., Vol. 79, 1994, pp. 157-214).
Numdam |  MR 95m:22009 |  Zbl 0814.11033
[10] S. FRIEDBERG and D. GOLDBERG, On local coefficients for nongeneric representations of some classical groups, Comp. Math., to appear.
arXiv |  Zbl 0938.22018
[11] S. GELBART, I. I. PIATETSKI-SHAPIRO, and S. RALLIS, Explicit construction of automorphic L-functions, (Lecture Notes in Math 1254, Springer-Verlag, 1987).  MR 89k:11038 |  Zbl 0612.10022
[12] HARISH-CHANDRA, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, (Annals of Math., Vol. 104, 1976, pp. 117-201).  MR 55 #12875 |  Zbl 0331.22007
[13] H. JACQUET and J. A. SHALIKA, Rankin Selberg Convolutions : Archimedean theory, in Festschrift in Honor of I.I. PIATETSKI-SHAPIRO, Part I, Editors : S. GELBART, R. HOWE, and P. SARNAK, (Israel Math. Conf. Proc., Vol. 2, Weizmann, Jerusalem, 1990, pp. 125-207).  MR 93d:22022 |  Zbl 0712.22011
[14] H. JACQUET and J. A. SHALIKA, The Whittaker models for induced representations, (Pacific J. Math., Vol. 109, 1983, pp. 107-120).
Article |  MR 85h:22023 |  Zbl 0535.22017
[15] H. KIM, Residual spectrum for Sp4, (Comp. Math., Vol. 99, 1995, pp. 129-151).
Numdam |  Zbl 0877.11030
[16] A.W. KNAPP and E.M. STEIN, Intertwining operators for semisimple groups II, (Invent. Math., Vol. 60, 1980, pp. 9-84).  MR 82a:22018 |  Zbl 0454.22010
[17] R. P. LANGLANDS, On the classification of irreducible representations of real algebraic groups, in (Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Editors P.J. SALLY, Jr. and D.A. VOGAN, Mathematical Surveys and Monographs, AMS, Vol. 31, 1989, pp. 101-170).  MR 91e:22017 |  Zbl 0741.22009
[18] R. P. LANGLANDS, On Artin's L-functions, (Rice University Studies, Vol. 56, 1970, pp. 23-28).  Zbl 0245.12011
[19] R. P. LANGLANDS, On the functional equations satisfied by Eisenstein series, (Lecture Notes in Math., Vol. 544, Springer-Verlag, 1976).  MR 58 #28319 |  Zbl 0332.10018
[20] J.-S. LI, Some results on the unramified principal series of p-adic groups, (Math. Ann., Vol. 292, 1992, pp. 747-761).  MR 93d:22023 |  Zbl 0804.22007
[21] C. MOEGLIN and J.-L. WALDSPURGER, Le spectre résiduel de GL(n), (Ann. Scient. Éc. Norm. Sup., Vol. 22, 1989, pp. 605-674).
Numdam |  MR 91b:22028 |  Zbl 0696.10023
[22] M. REEDER, p-adic Whittaker functions and vector bundles on flag manifolds, (Comp. Math., Vol. 85, 1993, pp. 9-36).
Numdam |  MR 93m:22020 |  Zbl 0819.22012
[23] F. SHAHIDI, A proof of Langlands' conjecture on Plancherel measures ; Complementary series for p-adic groups, (Ann. of Math., Vol. 132, 1990, pp. 273-330).  MR 91m:11095 |  Zbl 0780.22005
[24] F. SHAHIDI, Local coefficients as Artin factors for real groups, (Duke Math. J., Vol. 52, 1985, pp. 973-1007).
Article |  MR 87m:11049 |  Zbl 0674.10027
[25] F. SHAHIDI, On certain L-functions, (Amer. J. Math., Vol. 103, 1981, pp. 297-356).  MR 82i:10030 |  Zbl 0467.12013
[26] F. SHAHIDI, On multiplicativity of local factors, in (Festschrift in Honor of I.I. Piatetski-Shapiro, Part II, Editors : S. GELBART, R. HOWE, and P. SARNAK, Israel Math. Conf. Proc., Vol. 3, Weizmann, Jerusalem, 1990, pp. 279-289).  MR 93e:11144 |  Zbl 0841.11061
[27] F. SHAHIDI, Twisted endoscopy and reducibility of induced representations for p-adic groups, (Duke Math. J., Vol. 66, 1992, pp. 1-41).
Article |  MR 93b:22034 |  Zbl 0785.22022
[28] A. SILBERGER, The Langlands quotient theorem for p-adic groups, (Math. Ann., Vol. 236, 1978, pp. 95-104).  MR 58 #22413 |  Zbl 0362.20029
[29] A. SILBERGER, Introduction to Harmonic Analysis on Reductive p-adic Groups, Math. Notes of Princeton University Press, Vol. 23, Princeton, 1979.  MR 81m:22025 |  Zbl 0458.22006
[30] D. SOUDRY, Rankin-Selberg convolutions for SO2l+1 × GLn : Local theory, preprint.
[31] D. SOUDRY, On the archimedean theory of Rankin-Selberg Convolutions for SO2l+1 × GLn, (Ann. Scient. Éc. Norm. Sup., Vol. 28, 1995, pp. 161-224).
Numdam |  MR 96m:11043 |  Zbl 0824.11034
[32] B. SPEH, Some results on principal series for GL(n, ℝ), Ph.D. Dissertation, (Massachusetts Institute of Technology, June, 1977).
[33] B. SPEH and D. VOGAN, Reducibility of generalized principal series representations, (Acta Math., Vol. 145, 1980, pp. 227-299).  MR 82c:22018 |  Zbl 0457.22011
[34] M. TADIĆ, On regular square integrable representations of p-adic groups, Amer. J. Math., Vol. 120, 1997, pp. 159-210.  MR 99h:22026 |  Zbl 0903.22008
[35] M. TADIĆ, Construction of square integrable representations of classical p-adic groups, (Mathematica Gottingensis Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis, Heft, Vol. 11, 1993, pp. 1-48.20).
[36] M. TADIĆ, Square integrable representations of classical p-adic groups of segment type, (Mathematica Gottingensis Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis, Heft, Vol. 15, 1994, pp. 1-16).
[37] D. VOGAN, Gelfand-Kirillov dimension for Harish-Chandra modules, (Invent. Math., Vol. 48, 1978, pp. 75-98).  MR 58 #22205 |  Zbl 0389.17002
[38] D. VOGAN, Unitarizability of certain series of representations, (Ann. of Math., Vol. 120, 1984, pp. 141-187).  MR 86h:22028 |  Zbl 0561.22010
[39] D. VOGAN, Representations of real reductive Lie groups, Birkhauser, Boston, 1981.  MR 83c:22022 |  Zbl 0469.22012
[40] N.R. WALLACH, Asymptotic expansions of generalized matrix entries of representations of real reductive groups, in (Lie Group Representations I, Lecture Notes in Math., Vol. 1024, Springer-Verlag, 1983, pp. 287-369).  MR 85g:22029 |  Zbl 0553.22005
[41] A.V. ZELEVINSKY, Induced representations of reductive p-adic groups II, on irreducible representations of GL(n), (Ann. Scient. Éc. Norm. Sup., Vol. 13, 1980, pp. 165-210).
Numdam |  MR 83g:22012 |  Zbl 0441.22014
[42] G. MUIĆ, Some results on square integrable representations ; Irreducibility of standard representations, preprint.
[43] Y. ZHANG, The holomorphy and nonvanishing of normalized local intertwining operators, (Pacific J. Math., Vol. 180, 1997, pp. 385-398).  MR 98k:22076 |  Zbl 1073.22502
Copyright Cellule MathDoc 2014 | Crédit | Plan du site