Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Candel, Alberto
Uniformization of surface laminations. Annales scientifiques de l'École Normale Supérieure, Sér. 4, 26 no. 4 (1993), p. 489-516
Texte intégral djvu | pdf | Analyses MR 94f:57025 | Zbl 0785.57009 | 5 citations dans Numdam

URL stable: http://www.numdam.org/item?id=ASENS_1993_4_26_4_489_0

Bibliographie

[1] L. AHLFORS and L. BERS, Riemann's Mapping Theorem for Variable Metrics, Annals of Math., Vol. 72, 1960, p. 385-404.  MR 22 #5813 |  Zbl 0104.29902
[2] R. BRODY, Compact Manifolds and Hyperbolicity, Trans. Amer. Math. Soc., Vol. 235, 1978, p. 213-219.  MR 57 #10010 |  Zbl 0416.32013
[3] G. CAIRNS and E. GHYS, Totally Geodesic Foliations of Four-Manifolds, J. Differential Geom., Vol. 23, 1986, p. 241-254.  MR 87m:53043 |  Zbl 0601.53027
[4] J. CANTWELL and L. CONLON, Leafwise Hyperbolicity of Proper Foliations. Comment. Math. Helv., Vol. 64, 1989, p. 329-337. A correction. Ibid., Vol. 66, 1991, p. 319-321.  MR 90f:57035 |  Zbl 0768.57013
[5] A. CONNES, Sur la théorie non-commutative de l'intégration, Algèbres d'Opérateurs. Lecture Notes in Math., Vol. 725, p. 19-143. Springer-Verlag, New York, 1979.  MR 81g:46090 |  Zbl 0412.46053
[6] C. EARLE and A. SCHATZ, Teichmüller Theory for Surfaces with Boundary. J. Differential Geom., Vol. 4, 1970, p. 169-185.  MR 43 #2737b |  Zbl 0194.52802
[7] D. EPSTEIN, K. MILLETT and D. TISCHLER, Leaves Without Holonomy. J. London Math. Soc., Vol. 16, 1977, p. 548-552.  MR 57 #4193 |  Zbl 0381.57007
[8] L. GARNETT, Foliations, the Ergodic Theorem and Brownian Motion. J. of Funct. Anal., Vol. 51, 1983, p. 285-311.  MR 84j:58099 |  Zbl 0524.58026
[9] E. GHYS, Gauss-Bonnet Theorem for 2-Dimensional Foliations. J. of Funct. Anal., Vol. 77, 1988, p. 51-59.  MR 89d:57040 |  Zbl 0656.57017
[10] S. GOODMAN and J. PLANTE, Holonomy and Averaging in Foliated Sets. J. Differential Geom., Vol. 14, 1979, p. 401-407.  MR 81m:57020 |  Zbl 0475.57007
[11] C. MOORE and C. SCHOCHET, Global Analysis of Foliated Spaces. Springer-Verlag, New York, 1988.  MR 89h:58184 |  Zbl 0648.58034
[12] A. PHILLIPS and D. SULLIVAN, Geometry of Leaves. Topology, Vol. 20, 1981, p. 209-218.  MR 82f:57021 |  Zbl 0454.57016
[13] J. PLANTE, Foliations with Measure Preserving Holonomy. Annals of Math., Vol. 105, 1975, p. 327-361.  MR 52 #11947 |  Zbl 0314.57018
[14] G. REEB, Sur certaines propriétés topologiques des variétés feuilletées. Hermann, Paris, 1952.  MR 14,1113a |  Zbl 0049.12602
[15] D. RUELLE and D. SULLIVAN, Currents, Flows and Diffeomorphisms. Topology, Vol. 14, 1975, p. 319-327.  MR 54 #3759 |  Zbl 0321.58019
[16] D. SULLIVAN, Cycles for the Dynamical Study of Foliated Manifolds and Complex Manifolds, Invent. Math., Vol. 36, 1976, p. 225-255.  MR 55 #6440 |  Zbl 0335.57015
[17] D. SULLIVAN, Bounds, Quadratic Differentials, and Renormalization Conjectures. Mathematics into the 21st Century. Vol. 2. American Mathematical Society Centennial Publications, Providence, 1991.  Zbl 0936.37016
[18] A. VERJOVSKY, A Uniformization Theorem for Holomorphic Foliations. Contemp. Math., Vol. 58, III, 1987, p. 233-253.  MR 88h:57027 |  Zbl 0619.32017
Copyright Cellule MathDoc 2014 | Crédit | Plan du site