Recherche et téléchargement d’archives de revues mathématiques numérisées

  Table des matières de ce fascicule | Article précédent | Article suivant
Božičević, Mladen
Constant term in Harish-Chandra’s limit formula. Annales mathématiques Blaise Pascal, 15 no. 2 (2008), p. 153-168
Texte intégral djvu | pdf | Analyses MR 2468041 | Zbl 1162.22013
Class. Math.: 22E46, 22E30

URL stable:

Voir cet article sur le site de l'éditeur


Let $G_\mathbb{R}$ be a real form of a complex semisimple Lie group $G$. Recall that Rossmann defined a Weyl group action on lagrangian cycles supported on the conormal bundle of the flag variety of $G$. We compute the signed average of the Weyl group action on the characteristic cycle of the standard sheaf associated to an open $G_\mathbb{R}$-orbit on the flag variety. This result is applied to find the value of the constant term in Harish-Chandra’s limit formula for the delta function at zero.


[1] D. Barbasch and D. Vogan, Weyl group representations and nilpotent orbits, Representations of Reductive Groups, Progr. Math. 40, Birkhäuser, Boston, 1982  MR 733804 |  Zbl 0537.22013
[2] J. Bernstein and V. Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics 1578, Springer-Verlag, 1994  MR 1299527 |  Zbl 0808.14038
[3] M. Božičević, Limit formulas for groups with one conjugacy class of Cartan subgroups, Ann. Inst. Fourier, 58:1213-1232, 2008
Numdam |  MR 2427959 |  Zbl pre05303674
[4] Harish-Chandra, Fourier transform on a semisimple Lie algebra II, Amer. J. Math., 79:733-760, 1957  MR 96138 |  Zbl 0080.10201
[5] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer-Verlag, 1990  MR 1074006 |  Zbl 0709.18001
[6] M. Libine, A localization argument for characters of reductive Lie groups, J. Funct. Anal., 203:197-236, 2003  MR 1996871 |  Zbl 1025.22012
[7] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31:331-357, 1979
Article |  MR 527548 |  Zbl 0396.53025
[8] W. Rossmann, Nilpotent orbital integrals in a real semisimple Lie algebra and representations of the Weyl groups, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Progr. Math. 92, Birkhäuser, Boston, 1990  MR 1103593 |  Zbl 0744.22012
[9] W. Rossmann, Picard-Lefschetz theory for the coadjoint quotient of a semisimple Lie algebra, Invent. Math., 121:531-578, 1995  MR 1353308 |  Zbl 0861.22008
[10] W. Schmid, Construction and classification of irreducible Harish-Chandra modules, Harmonic analysis on reductive groups, Progr. Math. 101, Birkhäuser, Boston, 1991  MR 1168487 |  Zbl 0751.22003
[11] W. Schmid and K. Vilonen, Characteristic cycles of constructible sheaves, Invent. Math., 124:451-502, 1996  MR 1369425 |  Zbl 0851.32011
[12] W. Schmid and K. Vilonen, Two geometric character formulas for reductive Lie groups, J. Amer. Math. Soc., 11:799-867, 1998  MR 1612634 |  Zbl 0976.22010
[13] V.S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Math. 102, Springer-Verlag, 1984  MR 746308 |  Zbl 0955.22500
[14] M. Vergne, Polynômes de Joseph et représentation de Springer, Ann. Sci. École Norm. Sup. (4), 23:543-562, 1990
Numdam |  MR 1072817 |  Zbl 0718.22009
Copyright Cellule MathDoc 2016 | Crédit | Plan du site