Recherche et téléchargement d’archives de revues mathématiques numérisées

  Table des matières de ce fascicule | Article précédent
Katsaras, Athanasios
$p$-adic spaces of continuous functions I. Annales mathématiques Blaise Pascal, 15 no. 1 (2008), p. 109-133
Texte intégral djvu | pdf | Analyses MR 2418016 | Zbl 1158.46050 | 1 citation dans Numdam
Class. Math.: 46S10, 46G10

URL stable:

Voir cet article sur le site de l'éditeur


Properties of the so called $\theta _{o}$-complete topological spaces are investigated. Also, necessary and sufficient conditions are given so that the space $C(X,E)$ of all continuous functions, from a zero-dimensional topological space $X$ to a non-archimedean locally convex space $E$, equipped with the topology of uniform convergence on the compact subsets of $X$ to be polarly barrelled or polarly quasi-barrelled.


[1] J. Aguayo, N. De Grande-De Kimpe and S. Navarro, Zero-dimensional pseudocompact and ultraparacompact spaces, $p$-adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, 1997  MR 1459198 |  Zbl 0888.54026
[2] J. Aguayo, A. K. Katsaras and S. Navarro, On the dual space for the strict topology $\beta _1$ and the space $M(X)$ in function space, Ultrametric functional analysis, Contemp. Math. 384, Amer. Math. Soc., 2005  MR 2174775 |  Zbl 1104.46046
[3] George Bachman, Edward Beckenstein, Lawrence Narici and Seth Warner, Rings of continuous functions with values in a topological field, Trans. Amer. Math. Soc., 204:91-112, 1975  MR 402687 |  Zbl 0299.54016
[4] A. K. Katsaras, The strict topology in non-Archimedean vector-valued function spaces, Nederl. Akad. Wetensch. Indag. Math., 462:189-201, 1984  MR 749531 |  Zbl 0548.46059
[5] A. K. Katsaras, Bornological spaces of non-Archimedean valued functions, Nederl. Akad. Wetensch. Indag. Math., 491:41-50, 1987  MR 883366 |  Zbl 0628.46077
[6] A. K. Katsaras, On the strict topology in non-Archimedean spaces of continuous functions, Glas. Mat. Ser. III, 35(55)2:283-305, 2000  MR 1812558 |  Zbl 0970.46049
[7] A. K. Katsaras, Separable measures and strict topologies on spaces of non-Archimedean valued functions, Bull. Belg. Math. Soc. Simon Stevin, 9suppl.:117-139, 2002  MR 2232644 |  Zbl 1107.46052
[8] W. H. Schikhof, Locally convex spaces over nonspherically complete valued fields. I, II, Bull. Soc. Math. Belg. Sér. B, 382:187-207, 208–224, 1986  MR 871313 |  Zbl 0615.46071
[9] A. C. M. van Rooij, Non-Archimedean functional analysis, Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker Inc., 1978  MR 512894 |  Zbl 0396.46061
Copyright Cellule MathDoc 2014 | Crédit | Plan du site