Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Arnal, Didier; Bel Baraka, Nadia; Wildberger, Norman J.
Diamond representations of $\mathfrak{sl}(n)$. Annales mathématiques Blaise Pascal, 13 no. 2 (2006), p. 381-429
Texte intégral djvu | pdf | Analyses MR 2275452 | Zbl 05127369

URL stable: http://www.numdam.org/item?id=AMBP_2006__13_2_381_0

Voir cet article sur le site de l'éditeur

Résumé

In [6], there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)$ module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional ${\mathcal{U}}_q(\mathfrak{sl}(3))$-modules. In the present work, we generalize this construction to $\mathfrak{sl}(n)$. We show it is in fact a description of the reduced shape algebra, a quotient of the shape algebra of $\mathfrak{sl}(n)$. The basis used in [6] is thus naturally parametrized with the so called quasi standard Young tableaux. To compute the matrix coefficients of the representation in this basis, it is possible to use Groebner basis for the ideal of reduced Plücker relations defining the reduced shape algebra.

Bibliographie

[1] D. Cox, J. Little and D. O’shea, Ideals, varieties, and algorithms, Springer-Verlag, 1996  Zbl 0861.13012
[2] W. Fulton and J. Harris, Representation theory, Springer-Verlag, 1991  MR 1153249 |  Zbl 0744.22001
[3] M. Kashiwara, Bases cristallines des groupes quantiques, Soc. Math. France, 2002  MR 1997677 |  Zbl 1066.17007
[4] G. Lancaster and J. Towber, Representation-functors and flag-algebras for the classical groups, J. Algebra, 59, 1979  MR 541667 |  Zbl 0441.14013
[5] V.S. Varadarajan, Lie groups, Lie algebras, and their representations, Springer-Verlag, 1984  MR 746308 |  Zbl 0955.22500
[6] N. Wildberger, Quarks, diamonds and representation of $\mathfrak{sl}(3)$, Submitted, 2005
Copyright Cellule MathDoc 2014 | Crédit | Plan du site