Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Keraani, Sahbi; Vargas, Ana
A smoothing property for the ${L}^{2}$-critical NLS equations and an application to blowup theory. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 26 no. 3 (2009), p. 745-762
Analyses MR 2526400 | Zbl 1178.35313
Le texte intégral des articles récents est réservé aux abonnés. Consulter le site du journal

URL stable: http://www.numdam.org/item?id=AIHPC_2009__26_3_745_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Bégout P., Vargas A., Mass concentration phenomena for the ${L}^{2}$-critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc. 359 (2007) 5257-5282.  MR 2327030 |  Zbl 1171.35109
[2] Bergh J., Löfström J., Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin, New York, 1976.  MR 482275 |  Zbl 0344.46071
[3] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (2) (1981) 209-246.
Numdam |  MR 631751 |  Zbl 0495.35024
[4] Bourgain J., On the restriction and the multiplier problem in ${R}^{3}$, in: Geometrics Aspects of Functional Analysis, Springer Lecture Notes in Math., vol. 1469, 1991, pp. 179-191.  MR 1122623 |  Zbl 0792.42004
[5] Bourgain J., Refinements of Strichartz inequality and applications to 2D-NLS with critical nonlinearity, IMRN 5 (1998) 253-283.  MR 1616917 |  Zbl 0917.35126
[6] Carles R., Keraani S., Quadratic oscillations in NLS II. The ${L}^{2}$-critical case, Trans. Amer. Math. Soc. 359 (1) (2007) 33-62.  MR 2247881 |  Zbl 1115.35119
[7] Cazenave T., Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York, 2003, American Mathematical Society, Providence, RI.  MR 2002047 |  Zbl 1055.35003
[8] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Almost conservation laws and global rough solutions to a nonlinear Schrödinger equation, Math. Res. Lett. 9 (2002) 659-682.  MR 1906069 |  Zbl 1152.35491
[9] Colliander J., Raynor S., Sulem C., Wright J.D., Ground state mass concentration in the ${L}^{2}$-critical nonlinear Schrödinger equation below ${H}^{1}$, Math. Res. Lett. 12 (2–3) (2005) 357-375.  MR 2150890 |  Zbl 1084.35088
[10] Constantin P., Saut J.C., Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1) (April 1988).  MR 928265 |  Zbl 0667.35061
[11] Cordoba A., The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1) (1977) 1-22.  MR 447949 |  Zbl 0384.42008
[12] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness and polynomial bounds for the ${L}^{2}$-critical nonlinear Schrödinger equation in $R$, Preprint.
[13] D. De Silva, N. Pavlovic, G. Staffilani, N. Tzirakis, Global well-posedness for the ${L}^{2}$-critical nonlinear Schrödinger equation in higher dimensions, Preprint, 2006.  Zbl 1152.35106
[14] Y. Fang, M. Grillakis, On the global existence of rough solutions of the cubic defocusing Schrödinger equation in ${R}^{2+1}$, Preprint, 2006.  MR 2329384 |  Zbl 1122.35132
[15] Fefferman C., Inequalities for strongly singular convolution operators, Acta Math. 124 (1970) 9-36.  MR 257819 |  Zbl 0188.42601
[16] Fefferman C., A note on spherical summation multipliers, Israel J. Math. 15 (1973) 44-52.  MR 320624 |  Zbl 0262.42007
[17] J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain) (in French. French summary) (The Cauchy problem for periodic semilinear PDE in space variables (after Bourgain)), Seminaire Bourbaki, vol. 1994/95.
Numdam |  Zbl 0870.35096
[18] Hmidi T., Keraani S., Blowup theory for the critical nonlinear Schrödinger equations revisited, Int. Math. Res. Not. 5 (2005) 2815-2828.  MR 2180464 |  Zbl 1126.35067
[19] Hmidi T., Keraani S., Remarks on the blowup for the ${L}^{2}$-critical nonlinear Schrödinger equations, SIAM J. Math. Anal. 38 (4) (2006) 1035-1047.  MR 2274472 |  Zbl 1122.35135
[20] Keraani S., On the blow up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal. 235 (1) (2006) 171-192.  MR 2216444 |  Zbl 1099.35132
[21] Merle F., Determination of blowup solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (2) (1993) 203-254.
Article |  MR 1203233 |  Zbl 0808.35141
[22] Merle F., Construction of solutions with exactly k blowup points for nonlinear Schrödinger equations with critical nonlinearity, Commun. Math. Phys. 129 (2) (1990) 223-240.
Article |  MR 1048692 |  Zbl 0707.35021
[23] Merle F., Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations, in: Proceedings of the International Congress of Mathematicians, vol. III, Berlin, 1998, Doc. Math., Extra vol. III, 1998, pp. 57-66.  MR 1648140 |  Zbl 0896.35123
[24] Merle F., Raphael P., On a sharp lower bound on the blow-up rate for the ${L}^{2}$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (1) (2006) 37-90.  MR 2169042 |  Zbl 1075.35077
[25] Merle F., Raphael P., On universality of blow-up profile for ${L}^{2}$ critical nonlinear Schrödinger equation, Invent. Math. 156 (3) (2004) 565-672.  MR 2061329 |  Zbl 1067.35110
[26] Merle F., Tsutsumi Y., ${L}^{2}$ concentration of blowup solutions for the nonlinear Schröinger equation with critical power nonlinearity, J. Differential Equations 84 (2) (1990) 205-214.  MR 1047566 |  Zbl 0722.35047
[27] Merle F., Vega L., Compactness at blowup time for ${L}^{2}$ solutions of the critical nonlinear Schrödinger equations in 2D, IMRN 8 (1998) 399-425.  MR 1628235 |  Zbl 0913.35126
[28] Moyua A., Vargas A., Vega L., Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not. 16 (1996) 793-815.  MR 1413873 |  Zbl 0868.35024
[29] Moyua A., Vargas A., Vega L., Restriction theorems and maximal operators related to oscillatory integrals in ${R}^{3}$, Duke Math. J. 96 (1999) 547-574.
Article |  MR 1671214 |  Zbl 0946.42011
[30] Sjölin P., Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987) 699-715.
Article |  MR 904948 |  Zbl 0631.42010
[31] Sulem C., Sulem P.-L., The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999.  MR 1696311 |  Zbl 0928.35157
[32] Tao T., A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (6) (2003) 1359-1384.  MR 2033842 |  Zbl 1068.42011
[33] Tao T., Visan M., Zhang X., Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J. 140 (1) (2007) 165-202.
Article |  MR 2355070 |  Zbl pre05208403
[34] T. Tao, M. Visan, X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Mathematicum, in press.  Zbl 1154.35085
[35] Tzirakis N., Mass concentration phenomenon for the quintic nonlinear Schrödinger equation in 1D, SIAM J. Math. Anal. 37 (6) (2006) 1923-1946, (electronic).  MR 2213400 |  Zbl 1109.35106
[36] Vega L., Schrödinger equation: Pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (4) (1988) 874-878.  MR 934859 |  Zbl 0654.42014
[37] Visan M., Zhang X., On the blowup for the ${L}^{2}$-critical focusing nonlinear Schrödinger equation in higher dimensions below the energy class, SIAM J. Math. Anal. 39 (1) (2007) 34-56.  MR 2318374 |  Zbl 1135.35079
[38] Weinstein M.I., Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983) 567.
Article |  MR 691044 |  Zbl 0527.35023
Copyright Cellule MathDoc 2014 | Crédit | Plan du site