Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article suivant
Saint-Raymond, Laure
Hydrodynamic limits : some improvements of the relative entropy method. Annales de l'I.H.P. Analyse non linéaire, 26 no. 3 (2009), p. 705-744
Analyses MR 2526399 | Zbl 1170.35500
Le texte intégral des articles récents est réservé aux abonnés. Consulter le site du journal

URL stable: http://www.numdam.org/item?id=AIHPC_2009__26_3_705_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Aoki K., Sone Y., Steady gas flows past bodies at small Knudsen numbers – Boltzmann and hydrodynamic systems, Trans. Theory Stat. Phys. 16 (1987) 189-199.  Zbl 0622.76082
[2] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of the Boltzmann equation I, J. Stat. Phys. 63 (1991) 323-344.  MR 1115587
[3] Bardos C., Golse F., Levermore C.D., Fluid dynamic limits of the Boltzmann equation II: Convergence proofs, Comm. Pure Appl. Math. 46 (1993) 667-753.  MR 1213991 |  Zbl 0817.76002
[4] Biryuk A., Craig W., Panferov V., Strong solutions of the Boltzmann equation in one spatial dimension, C. R. Acad. Sci. Paris 342 (2006) 843-848.  MR 2224633 |  Zbl 1096.35001
[5] Bouchut F., Golse F., Pulvirenti M., Desvillettes L., Perthame B. (Eds.), Kinetic Equations and Asymptotic Theory, Editions scientifiques et médicales Elsevier, Paris, 2000.  MR 2065070
[6] Caflisch R., The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous, Commun. Math. Phys. 74 (1980) 71-95.
Article |  MR 575897 |  Zbl 0434.76065
[7] Cercignani C., Global weak solutions of the Boltzmann equation, J. Stat. Phys. 118 (2005) 333-342.  MR 2122558 |  Zbl 1097.82022
[8] Chapman S., Cowling T.G., The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases, Cambridge University Press, New York, 1960.  MR 116537 |  Zbl 0726.76084 |  JFM 65.1541.01
[9] Chemin J.-Y., Perfect Incompressible Fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998.  MR 1688875 |  Zbl 0927.76002
[10] Chemin J.-Y., Desjardins B., Gallagher I., Grenier E., Mathematical Geophysics. An Introduction to Rotating Fluids and the Navier–Stokes Equations, Oxford Lecture Series in Mathematics and its Applications, vol. 32, The Clarendon Press, Oxford University Press, Oxford, 2006.  MR 2228849 |  Zbl pre05029231
[11] DeMasi A., Esposito R., Lebowitz J., Incompressible Navier–Stokes and Euler limits of the Boltzmann equation, Comm Pure Appl. Math. 42 (1990) 1189-1214.  MR 1029125 |  Zbl 0689.76024
[12] Desjardins B., Grenier E., Low Mach number limit of viscous compressible flows in the whole space, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2271-2279.  MR 1702718 |  Zbl 0934.76080
[13] Di Perna R., Lions P.-L., On the Cauchy problem for the Boltzmann equation: global existence and weak stability results, Ann. of Math. 130 (1990) 321-366.  MR 1014927 |  Zbl 0698.45010
[14] Gallagher I., Saint-Raymond L., On the influence of the Earth's rotation on geophysical flows, in: Handbook of Mathematical Fluid Dynamics, vol. 4, Elsevier, 2007.
[15] F. Golse, L. Saint-Raymond, The Navier–Stokes limit of the Boltzmann equation for hard potentials, submitted for publication.
[16] H. Grad, Asymptotic theory of the Boltzmann equation. II, in: Rarefied Gas Dynamics, vol. I, Proc. 3rd Internat. Sympos., Palais de l'UNESCO, Paris, 1962, 1963, pp. 26–59.  MR 156656
[17] Grenier E., Quelques Limites Singulières Oscillantes, Séminaire sur les Equations aux Dérivées Partielles, vol. 21, Ecole Polytech., Palaiseau, 1995.
Numdam |  MR 1362569 |  Zbl 0873.35068
[18] Grenier E., On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math. 53 (2000) 1067-1091.  MR 1761409 |  Zbl 1048.35081
[19] Guo Y., The Vlasov–Poisson–Boltzmann system near Maxwellians, Comm. Pure Appl. Math. 55 (2002) 1104-1135.  MR 1908664 |  Zbl 1027.82035
[20] Guo Y., The Boltzmann equation in the whole space, Indiana Univ. Math. J. 53 (2004) 1081-1094.  MR 2095473 |  Zbl 1065.35090
[21] Hilbert D., Begründung der kinetischen Gastheorie, Math. Ann. 72 (1912) 562-577.  MR 1511713 |  JFM 43.1055.03
[22] Lions P.-L., Conditions at infinity for Boltzmann's equation, Comm. Partial Differential Equations 19 (1994) 335-367.  MR 1257008 |  Zbl 0799.35210
[23] Lions P.-L., Masmoudi N., From Boltzmann equation to the Navier–Stokes and Euler equations I, Arch. Ration Mech. Anal. 158 (2001) 173-193.  MR 1842343 |  Zbl 0987.76088
[24] Lions P.-L., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris 329 (1999) 387-392.  MR 1710123 |  Zbl 0937.35132
[25] Masmoudi N., Ekman layers of rotating fluids: the case of general initial data, Commun. Pure Appl. Math. 53 (2000) 432-483.  MR 1733696 |  Zbl 1047.76124
[26] S. Mischler, Kinetic equations with Maxwell boundary condition, Preprint.
[27] Saint-Raymond L., Du modèle BGK de l'équation de Boltzmann aux équations d'Euler des fluides incompressibles, Bull. Sci. Math. 126 (2002) 493-506.  MR 1931626 |  Zbl 1023.76042
[28] Saint-Raymond L., Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration. Mech. Anal. 166 (2003) 47-80.  MR 1952079 |  Zbl 1016.76071
[29] L. Saint-Raymond, Hydrodynamic limits of the Boltzmann equation, Lectures at SISSA, Trieste, Lecture Notes in Mathematics, Preprint.  Zbl 1171.82002
[30] Schochet S., Fast singular limits of hyperbolic PDEs, J. Differential Equations 114 (1994) 476-512.  MR 1303036 |  Zbl 0838.35071
[31] Yau H.T., Relative entropy and hydrodynamics of Ginzburg–Landau models, Lett. Math. Phys. 22 (1991) 63-80.  MR 1121850 |  Zbl 0725.60120
Copyright Cellule MathDoc 2014 | Crédit | Plan du site