Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent
Goatin, Paola; Le Floch, Philippe G.
The Riemann problem for a class of resonant hyperbolic systems of balance laws. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 21 no. 6 (2004), p. 881-902
Texte intégral djvu | pdf | Analyses MR 2097035 | Zbl 1086.35069 | 3 citations dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2004__21_6_881_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Amadori D., Gosse L., Guerra G., Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rational Mech. Anal. 162 (2002) 327-366.  MR 1904499 |  Zbl 1024.35066
[2] Amadori D., Gosse L., Guerra G., Godunov-type approximation for a general resonant balance law with large data, J. Differential Equations 198 (2004) 233-274.  MR 2038581 |  Zbl 1058.35156
[3] N. Andrianov, G. Warnecke, The Riemann problem for the Baer–Nunziato model of two-phase flows, J. Comput. Phys., in press.  Zbl 02083208
[4] N. Andrianov, G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., in press.  MR 2068446 |  Zbl 1065.35191
[5] Andrianov N., Saurel R., Warnecke G., A simple method for compressible multiphase mixtures and interfaces, Int. J. Num. Meth. Fluids 41 (2003) 109-131.  MR 1950175 |  Zbl 1025.76025
[6] F. Asakura, Global solutions with a single transonic shock wave for quasilinear hyperbolic systems, submitted for publication.  MR 1602728 |  Zbl 0886.35092
[7] Botchorishvili R., Perthame B., Vasseur A., Equilibrium schemes for scalar conservation laws with stiff sources, Math. of Comput. 72 (2003) 131-157.  MR 1933816 |  Zbl 1017.65070
[8] F. Bouchut, An introduction to finite volume methods for hyperbolic systems of conservation laws with source, INRIA Rocquencourt Report, 2002.
[9] Chen G.-Q., Glimm J., Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys. 180 (1996) 153-193.
Article |  MR 1403862 |  Zbl 0857.76073
[10] Clarke F.H., Optimization and Non-Smooth Analysis, Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.  MR 1058436 |  Zbl 0696.49002
[11] Courant R., Friedrichs K.O., Supersonic Flow and Shock Waves, Wiley, New York, 1948.  MR 29615 |  Zbl 0041.11302
[12] Dal Maso G., LeFloch P.G., Murat F., Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995) 483-548.  MR 1365258 |  Zbl 0853.35068
[13] Embid P., Goodman J., Majda J., Multiple steady states for 1-D transonic flows, SIAM J. Sci. Stat. Comput. 5 (1984) 21-41.  MR 731879 |  Zbl 0573.76055
[14] Glimm J., Marschall G., Plohr B., A generalized Riemann problem for quasi-one-dimensional gas flows, Adv. Appl. Math. 5 (1981) 1-30.  MR 736548 |  Zbl 0566.76056
[15] Gosse L., A well-balanced scheme using non-conservative products designed for hyperbolic conservation laws with source-terms, Math. Model Methods Appl. Sci. 11 (2001) 339-365.  MR 1820677 |  Zbl 1018.65108
[16] Greenberg J.M., Leroux A.Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal. 33 (1996) 1-16.  MR 1377240 |  Zbl 0876.65064
[17] Hartman P., Ordinary Differential Equations, Wiley, New York, 1964.  MR 171038 |  Zbl 0125.32102
[18] Isaacson E., Temple B., Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math. 52 (1992) 1260-1278.  MR 1182123 |  Zbl 0794.35100
[19] Isaacson E., Temple B., Convergence of the $2\times 2$ Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995) 625-640.  MR 1331577 |  Zbl 0838.35075
[20] Jin S., Wen X., An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comp. Math. 2 (2004) 230-249.  MR 2058935 |  Zbl 02066949
[21] S. Jin, X. Wen, Two interface numerical methods for computing hyperbolic systems with geometrical source terms having concentrations, SIAM J. Sci. Com., in press.  Zbl 1083.35062
[22] LeFloch P.G., Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Partial Differential Equations 13 (1988) 669-727.  MR 934378 |  Zbl 0683.35049
[23] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Math. and its Appl., Minneapolis, Preprint # 593, 1989.
[24] LeFloch P.G., An existence and uniqueness result for two nonstrictly hyperbolic systems, in: Keyfitz B.L., Shearer M. (Eds.), Nonlinear Evolution Equations that Change Type, IMA Volumes in Math. and its Appl., vol. 27, Springer-Verlag, 1990, pp. 126-138.  MR 1074190 |  Zbl 0727.35083
[25] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002.  MR 1927887 |  Zbl 1019.35001
[26] LeFloch P.G., Thanh M.D., The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Comm. Math. Sci. 1 (2003) 763-797.
Article |  MR 2041456 |  Zbl 1091.35044
[27] Lien W.C., Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (1999) 1075-1098.  MR 1692156 |  Zbl 0932.35142
[28] Liu T.-P., Quasilinear hyperbolic systems, Comm. Math. Phys. 68 (1979) 141-172.
Article |  MR 543196 |  Zbl 0435.35054
[29] Liu T.-P., Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83 (1982) 243-260.
Article |  MR 649161 |  Zbl 0576.76053
[30] Liu T.-P., Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys. 28 (1987) 2593-2602.  MR 913412 |  Zbl 0662.35068
[31] D. Marchesin, P.J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, PUC Report MAT 02/84, 1984.
[32] Marchesin D., Plohr B., Schecter S., An organizing center for wave bifurcation flow models, SIAM J. Appl. Math. 57 (1997) 1189-1215.  MR 1470921 |  Zbl 0886.34050
Copyright Cellule MathDoc 2014 | Crédit | Plan du site