Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Caffarelli, L; Li, Yan Yan
A Liouville theorem for solutions of the Monge–Ampère equation with periodic data. Annales de l'I.H.P. Analyse non linéaire, 21 no. 1 (2004), p. 97-120
Texte intégral djvu | pdf | Analyses Zbl 1108.35051

URL stable: http://www.numdam.org/item?id=AIHPC_2004__21_1_97_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Caffarelli L., A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity, Ann. of Math. 13 (1990) 129-134.  MR 1038359 |  Zbl 0704.35045
[2] Caffarelli L., Interior W2,p estimates for solutions of the Monge–Ampère equation, Ann. of Math. 131 (1990) 135-150.  MR 1038360 |  Zbl 0704.35044
[3] Caffarelli L., Graduate Course at the Courant Institute, New York University, New York, 1995.
[4] Caffarelli L., Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000) 547-563.  MR 1800860 |  Zbl 0978.60107
[5] Caffarelli L., Cabre X., Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995.  MR 1351007 |  Zbl 0834.35002
[6] Caffarelli L., Gutiérrez C., Properties of the solutions of the linearized Monge–Ampère equation, Amer. J. Math. 119 (1997) 423-465.  MR 1439555 |  Zbl 0878.35039
[7] Caffarelli L., Li Y.Y., An extension to a theorem of Jörgens, Calabi, and Pogorelov, Comm. Pure Appl. Math. 56 (2003) 549-583.  MR 1953651 |  Zbl 01981600
[8] Caffarelli L., Nirenberg L., Spruck J., The Dirichlet problem for nonlinear second-order elliptic equations, I. Monge–Ampère equation, Comm. Pure Appl. Math. 37 (1984) 369-402.  MR 739925 |  Zbl 0598.35047
[9] Caffarelli L., Viaclovsky J., On the regularity of solutions to Monge–Ampère equations on Hessian manifolds, Comm. Partial Differential Equations 26 (2001) 2339-2351.  MR 1876421 |  Zbl 0990.35029
[10] Calabi E., Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J. 5 (1958).
Article |  MR 106487 |  Zbl 0113.30104
[11] Cheng S.Y., Yau S.T., The real Monge–Ampère equation and affine flat structures, in: Proceedings of the Symposium on Differential Geometry and Differential Equations, vols. 1–3, Beijing, 1980, Science Press, Beijing, 1982, pp. 339-370.  MR 714338 |  Zbl 0517.35020
[12] Cheng S.Y., Yau S.T., Complete affine hypersurfaces. I. The completeness of affine metrics, Comm. Pure Appl. Math. 39 (1986) 839-866.  MR 859275 |  Zbl 0623.53002
[13] Chou K.-S., Wang X.-J., A variational theory of the Hessian equation, Comm. Pure Appl. Math. 54 (2001) 1029-1064.  MR 1835381 |  Zbl 1035.35037
[14] De Guzman M., Differentiation of Integrals in Rn, Lecture Notes, vol. 481, Springer-Verlag, Berlin, 1976.  Zbl 0327.26010
[15] Evans L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982) 333-363.  MR 649348 |  Zbl 0469.35022
[16] Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983.  MR 737190 |  Zbl 0562.35001
[17] Jörgens K., Über die Lösungen der Differentialgleichung rts2=1, Math. Ann. 127 (1954) 130-134.
[18] Krylov N.V., Boundedly inhomogeneous elliptic and parabolic equation in a domain, Izv. Akad. Nauk SSSR 47 (1983) 75-108.  MR 688919 |  Zbl 0578.35024
[19] Krylov N.V., Safonov M.V., An estimate of the probability that a diffusion process hits a set of positive measure, Dokl. Akad. Nauk. SSSR 245 (1979) 253-255, English translation in: , Soviet Math. Dokl. 20 (1979) 253-255.  MR 525227 |  Zbl 0459.60067
[20] Li Y.Y., Some existence results of fully nonlinear elliptic equations of Monge–Ampère type, Comm. Pure Appl. Math. 43 (1990) 233-271.  MR 1038143 |  Zbl 0705.35038
[21] Pogorelov A.V., On the improper affine hypersurfaces, Geom. Dedicata 1 (1972) 33-46.  MR 319126 |  Zbl 0251.53005
[22] Trudinger N., Wang X., The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000) 399-422.  MR 1757001 |  Zbl 0978.53021
Copyright Cellule MathDoc 2014 | Crédit | Plan du site