Recherche et téléchargement d’archives de revues mathématiques numérisées

 
 
  Table des matières de ce fascicule | Article précédent | Article suivant
Acerbi, E; Mingione, G; Seregin, G. A.
Regularity results for parabolic systems related to a class of non-newtonian fluids. Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 21 no. 1 (2004), p. 25-60
Texte intégral djvu | pdf | Analyses MR 2037246 | Zbl 1052.76004 | 1 citation dans Numdam

URL stable: http://www.numdam.org/item?id=AIHPC_2004__21_1_25_0

Voir cet article sur le site de l'éditeur

Bibliographie

[1] Acerbi E., Mingione G., Regularity results for a class of functionals with nonstandard growth, Arch. Rational Mech. Anal. 156 (2001) 121-140.  MR 1814973 |  Zbl 0984.49020
[2] Acerbi E., Mingione G., Regularity results for electrorheological fluids: the stationary case, C. R. Acad. Sci. Paris Ser. I 334 (2002) 817-822.  MR 1905047 |  Zbl 1017.76098
[3] Acerbi E., Mingione G., Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal. 164 (2002) 213-259.  MR 1930392 |  Zbl 1038.76058
[4] Bildhauer M., Fuchs M., Partial regularity for variational integrals with (s,μ,q)-growth, Calc. Var. Partial Differential Equations 13 (2001) 537-560.  Zbl 1018.49026
[5] M. Bildhauer, M. Fuchs, Variants of the Stokes problem: the case of anisotropic potentials J. Math. Fluid Mechanics, submitted for publication.  MR 2004292 |  Zbl 1072.76019
[6] Caffarelli L., Kohn R.V., Nirenberg L., Partial regularity of suitable weak solutions of the Navier–Stokes equations, Comm. Pure Appl. Math. 35 (1982) 771-831.  MR 673830 |  Zbl 0509.35067
[7] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl. (4) 137 (1984) 83-122.  MR 772253 |  Zbl 0704.35024
[8] Coscia A., Mingione G., Hölder continuity of the gradient of p(x)-harmonic mappings, C. R. Acad. Sci. Paris Ser. I 328 (1999) 363-368.  MR 1675954 |  Zbl 0920.49020
[9] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph.D. Thesis, University of Freiburg, 2002.  Zbl 1022.76001
[10] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p,q) growth, J. Differential Equations, in press.  MR 2076158 |  Zbl 1072.49024
[11] Frehse J., Seregin G.A., Full regularity for a class of degenerated parabolic systems in two spatial variables, Manuscripta Math. 99 (1999) 517-539.  MR 1713807 |  Zbl 0931.35029
[12] Frehse J., Seregin G.A., Regularity of solutions to variational problems of the deformation theory of plasticity with logarithmic hardening, Amer. Math. Soc. Transl. Ser. 2 (1999) 193.  MR 1736908 |  Zbl 0973.74033
[13] Fuchs M., Seregin G.A., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Math., vol. 1749, Springer, Berlin, 2000.  MR 1810507 |  Zbl 0964.76003
[14] Fuchs M., Seregin G.A., Variational methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci. 22 (1999) 317-351.  MR 1671448 |  Zbl 0928.76087
[15] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987) 245-248.
Article |  MR 905200 |  Zbl 0638.49005
[16] Giusti E., Direct Methods in the Calculus of Variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.  MR 1962933 |  Zbl 1028.49001
[17] Ladyzhenskaya O.A., On nonlinear problems of continuum mechanics, in: Proc. Internat. Congr. Math. (Moscow 1966), Nauka, Moscow, 1968, pp. 560-573, English translation in: , Amer. Math. Soc. Translation (2) 70 (1968).  Zbl 0194.41701
[18] Ladyzhenskaya O.A., New equations for description of motion of viscous incompressible fluids and global solvability of boundary value problems for them, Proc. Steklov Inst. Math. 102 (1967).  Zbl 0202.37802
[19] Ladyzhenskaya O.A., On some modifications of the Navier–Stokes equations for large gradient of velocity, Zap. Nauchn. Sem. Leningrad Odtel. Mat. Inst. Steklov (LOMI) 7 (1968) 126-154, English translation in: , Sem. Math. V.A. Steklov Math. Inst. Leningrad 7 (1968).  MR 241832 |  Zbl 0195.10602
[20] Ladyzhenskaya O.A., Seregin G.A., On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations, J. Math. Fluid Mech. 1 (1999) 356-387.  MR 1738171 |  Zbl 0954.35129
[21] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, vol. 23, American Mathematical Society, 1967.  MR 241822
[22] Lieberman G.M., Gradient estimates for a new class of degenerate elliptic and parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994) 497-522.
Numdam |  MR 1318770 |  Zbl 0839.35018
[23] Lions J.-L., Quelques methodes de resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969.  MR 259693 |  Zbl 0189.40603
[24] P. Marcellini, Un exemple de solution discontinue d' un probléme variationnel dans le cas scalaire, Preprint Dip. Mat. “U. Dini”, Univ. Firenze, 1987.
[25] Marcellini P., Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differential Equations 90 (1991) 1-30.  MR 1094446 |  Zbl 0724.35043
[26] Mingione G., The singular set of solutions to non-differentiable elliptic systems, Arch. Rational Mech. Anal. 166 (2003) 287-301.  MR 1961442 |  Zbl 01922408
[27] Malek J., Necas J., Růžička M., On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p≥2, Adv. Differential Equations 6 (2001) 257-302.  Zbl 1021.35085
[28] Malek J., Necas J., Rokyta M., Růžička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl. Math. Math. Comp., vol. 13, Chapman-Hall, London, 1996.  MR 1409366 |  Zbl 0851.35002
[29] Rajagopal K.R., Wineman A.S., Flow of electrorheological materials, Acta Mech. 91 (1992) 57-75.  MR 1140999 |  Zbl 0746.76095
[30] Rajagopal K.R., Růžička M., Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001) 59-78.  Zbl 0971.76100
[31] Růžička M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer, Berlin, 2000.  MR 1810360 |  Zbl 0962.76001
[32] Růžička M., Flow of shear dependent electrorheological fluids, C. R. Acad. Sci. Paris Ser. I Math. 329 (1999) 393-398.  MR 1710119 |  Zbl 0954.76097
[33] Seregin G.A., Interior regularity for solutions to the modified Navier–Stokes equations, J. Math. Fluid Mech. 1 (1999) 235-281.  MR 1738752 |  Zbl 0961.35106
[34] Seregin G.A., On the number of singular points of weak solutions to the Navier–Stokes equations, Comm. Pure Appl. Math. 54 (2001) 1019-1028.  MR 1829531 |  Zbl 1030.35133
[35] Seregin G.A., Sverak V., Navier–Stokes equations with lower bounds on the pressure, Arch. Rational Mech. Anal. 163 (2002) 65-86.  MR 1905137 |  Zbl 1002.35094
[36] Temam R., Navier–Stokes equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, 1984.  MR 609732 |  Zbl 0568.35002
[37] Zhikov V.V., Meyers type estimates for solving the nonlinear Stokes system, Differential Equations 33 (1997) 107-114.  MR 1607245 |  Zbl 0911.35089
Copyright Cellule MathDoc 2014 | Crédit | Plan du site